
Hardware support for
software security

& emerging technology
COSC312 / COSC412

Learning objectives

• Appreciate that hardware support for software security
is continuing to evolve

• Understand usefulness of emerging capability models
in hardware and software

• Outline how data flow security can be effected using
decentralised information flow control

• Explain the increasing need for accountability,
including data provenance

2COSC312 / COSC412 Lecture 12, 2024

Approximate ranking of vulnerabilities 1/2

• Vulnerable dependencies
• Late application of software updates; zero-day attacks

• Handling user input
• buffer-based attacks (e.g., buffer overflow)
• SQL injection
• XSS—cross site scripting; e.g., effects akin to session hijacking
• Unauthorised directory traversal
• DoS—i.e., denial of service

3COSC312 / COSC412 Lecture 12, 2024

Approximate ranking of vulnerabilities 2/2

• Failing to apply principle of least privilege (POLP)
• APIs that are too open regarding permissions
• Privilege escalation—lack of defence in depth
• Insider threats / phishing—again, lack of defence in depth

• System misconfiguration / design errors
• Missing application of encryption
• Missing access control checks
• Cloud specific risks: understanding shared security responsibility
• e.g., policy errors (open S3 buckets), vulnerability checking, etc.

4COSC312 / COSC412 Lecture 12, 2024

Emerging CPU hardware-based security

• Intel SGX provides for ‘enclaves’ of secure software
• RAM content only ever decrypted when on CPU die
• First revision had limits on memory volume within enclaves
• SGX upholds confidentiality, integrity, but not availability
• Only for user-space code: no system call support
• Involved in research ‘porting’ Docker to use SGX:
• Get around userspace limitation by using a library operating system
• Performance boosted by minimising enclave entry/exit transitions

• SGX is coarse-grained protection, unlike capabilities…
5COSC312 / COSC412 Lecture 12, 2024

Hardware-supported memory capabilities

• Mentioned capabilities within software:
• As a collection of privileges a particular principal holds
• Taken into programming within the E programming language

• Capability machines add support within CPU hardware
• All use of memory capabilities will be checked for valid use
• e.g., has effect of bounds-checking all pointer accesses
• … where bounds-checks can be fine-grained, e.g., byte granularity

• Cannot miss access control checks (if no hardware bugs)

6COSC312 / COSC412 Lecture 12, 2024

Cambridge CAP computer (1976)

• CAP had hardware capabilities:
• capability unit with 64 cap. registers

• Each capability contains:
• Base memory address
• Limit to the range accessible
• Access permission bits
• R/W to memory; also R/W to capabilities

• Memory up to 64K 32-bit words
• Access to memory required capability

7COSC312 / COSC412 Lecture 12, 2024—CC BY-SA image by User:Daderot from Wikipedia

https://en.wikipedia.org/wiki/CAP_computer#/media/File:CAP_Computer_(general_view)_-_Cambridge_University.JPG
https://commons.wikimedia.org/wiki/User:Daderot

Cambridge CHERI development

• That’s Capability Hardware Enhanced RISC Instructions
• i.e., a RISC CPU with an extended instruction set architecture

• CHERI is a hybrid capability architecture:
• CHERI can run legacy code as well as ‘pure’ capability code
• Pragmatic choice: pure-cap requires significant reengineering
• Legacy code’s memory access wrapped in default capabilities

• CHERI can be run in many ways:
• e.g., within the QEMU emulator; also on FPGA; and…

8COSC312 / COSC412 Lecture 12, 2024

Arm Morello within UK DSbD programme

• Morello is a limited-supply evaluation system from Arm
• (DSbD: Digital Security by Design, UK Gov.’s industry support)
• Includes a modified Neoverse N1 system-on-chip (superscalar)
• Arm’s Neoverse CPU designs are their pitch for data centres

• Aim is to allow realistic testing of capability software

• CheriBSD (cap-aware FreeBSD) is supported on Morello
• … also efforts made to port of Linux and Android

• Meanwhile work also proceeding on RISC-V support
9COSC312 / COSC412 Lecture 12, 2024

CHERI’s (memory) capability design

• 64-bit pointers are changed to 128-bit capabilities
• Capabilities include: address; bounds; permissions
• Address bounds are compressed—not byte-level granularity
• Caps. can be ‘sealed’: immutable; can’t be dereferenced

• CHERI uses bitmap to mark capabilities within RAM

• Strong security properties:
• Every CPU load, store and instruction fetch is cap-checked
• Capabilities can only be derived from existing capabilities
• Derived capabilities never increase range or permissions

10COSC312 / COSC412 Lecture 12, 2024

Rate control

• Intelligence organisations apply rate control protection
• i.e., avoid rapid exfiltration of data by limiting coms. rates
• Software answering queries may not need high bandwidth

• Not much use of rate control in today’s OS software
• … yet there are many cases of large-scale exfiltration!

• Fine-grained security hardware, e.g., capabilities may
provide the means to embed rate control effectively

11COSC312 / COSC412 Lecture 12, 2024

Toward more general data flow security

• Event-based software: message passing & processing
• Near real-time analysis versus store & query RDBMS approach

• Background: events versus messages?
• Messages use stateful protocols; explicit routing information
• Events are self-contained; amenable to content-based routing

• Off the shelf software: distributed stream processing
• automated trading, business activity monitoring, sensor nets.

12COSC312 / COSC412 Lecture 12, 2024

Distributed access control

• Recall approx. partition of access control schemes:
• Discretionary (DAC): owners of resources control privileges
• Mandatory (MAC): system-wide, consistent rules are applied

• Distribution adds extra challenges:
• Revocation of privileges
• Disseminating and evolving access control policy
• (Explored some of these challenges within our ‘OASIS’

distributed role-based access control system)

13COSC312 / COSC412 Lecture 12, 2024

Information flow control (IFC)

• IFC is a form of data-centric mandatory access control
• Uses security labels: classified, secret, top secret, ...
• All data items are labelled
• All security principals operate at a labelled level
• Simple limiting rules applied consistently: e.g., “no write down”

• Appealing for end-to-end security properties:
• Can manage both confidentiality and integrity checking
• Closely related to taint propagation models

14COSC312 / COSC412 Lecture 12, 2024

DIFC and event-based systems

• Decentralised IFC: security label set is managed dynamically
• Principals can create new labels, and issue privileges over them

• (D)IFC has been applied in programming languages & OSs
• e.g., Asbestos (UCLA), Flume (MIT), JIF (Cornell), D-star (Stanford)

• However event-based systems are also highly compatible
with (decentralised) information flow control techniques

• Decentralised Event Flow Control (DEFC):
• DEFC is a labelling model that works below the granularity of events

15COSC312 / COSC412 Lecture 12, 2024

(D)IFC in event-based systems

• Can treat all messages as multi-part structures
• Apply IFC labelling independently to each part
• Each part has its own

data and security label
• Middleware enforces

data-linked access
control to event parts

• For data transport, an event is an atomic unit
• External and internal event transport can use different technologies

Ev
en

t confidentiality tagsname data
∅type bid

{dark-pool}body ...

{dark-pool,s-trader-77}trader_id trader-77

integrity tags
{i-trader-77}

{i-trader-77}

{i-trader-77}

security label

event
parts

16COSC312 / COSC412 Lecture 12, 2024

DEFCon: a DEFC prototype

• Trusted engine handles lifecycle of event proc. units
• Engine also manages the lifecycle of security labels
• Tracks which units are operating with which label privileges
• Tracks labelling

of data

DEFCon Engine

Event

Event Dispatcher

Event Event

Unit 1
Processing

Logic

Input label Output label

privilegesendorsement
declassification

Unit 2
Processing

Logic

Input label Output label

privilegesendorsement
declassification

Unit 3
Processing

Logic

Input label Output label

privilegesendorsement
declassification

17COSC312 / COSC412 Lecture 12, 2024

DEFCon case study: pairs trading

• Pairs trading is a simple algorithm for stock trading
• Assume that stocks in a related market will move in a related way
• Look for divergence and bet on divergence soon reducing

• Modern exchanges are electronic, event-based systems:
• Orders are quick transactions, pub/sub for dissemination of stocks

• Competition in the market makes it very latency sensitive
• Co-host trading algorithms on server co-located with exchange

• Large brokers can offer ‘dark pools’: avoids exchange
18COSC312 / COSC412 Lecture 12, 2024

DEFCon case study: pairs trading

• Used DIFC to support safely co-located pairs trading
• Protection of market data integrity
• Strict control of interactions between clients’ investment strategies
• Ensure confidentiality of orders in ‘dark pool’ trading
• Bulk-move equities without revealing trader’s identity

• Allow auditing by regulatory authorities on completed transactions

• Treating stock-exchange hosting as a ‘cloud’ (in effect)

• DIFC protects traders’ strategies while efficiently utilising
infrastructure

19COSC312 / COSC412 Lecture 12, 2024

Unit that can declassify
all of its state

Event

Unit that cannot declassify
any of its state

Unit that has some state
that it cannot declassify

KEY:

Tagged by
Trader 1

Tagged by
Trader 2

8

Tick
MSFT
1234$

12:32:13

9

Stock
Exchange

Pair Monitor

Pair Monitor

Trader 1

Trader 2

Tick
MSFT
1230$

12:22:13

owns t1

owns t2

Match
buy: MSFT
sell: GOOG
mean: 1.92

Match
buy: GOOG
sell: MSFT
mean: 1.92

Monitor
symbol1: GOOG
symbol2: MSFT

mean: ...
sd: ...

Monitor
symbol1: GOOG
symbol2: MSFT

mean: ...
sd: ...

1

Bid
sell: MSFT

price: 1234$
name: Trader 1

Ask
buy: MSFT

price: 1234$
name: Trader 2

Regulator

Broker

Warning
msg: Trading volume

exceeded quota

Trade
price: 1234$

symbol: MSFT
buyer: Trader 1
seller: Trader 2

Delegation
user: Trader 2

owns r,s

owns b
secrecy: t1
integrity: s

secrecy: t2
integrity: s

owns s

2

3

4

5

6

7

Pairs trading event model

20COSC312 / COSC412 Lecture 12, 2024

CamFlow—IFC in Linux kernel

• SmartFlow project—DIFC engine confined to JVM
• Useful proof-of-concept, but can’t work with legacy software

• CloudSafetyNet project—built CamFlow DIFC engine
• Linux kernel implementation written by Thomas Pasquier
• Freely available as open source via https://camflow.org

• CamFlow has an explicit IFC API for new codebases…

•… but it can also apply policy to existing codebases
21COSC312 / COSC412 Lecture 12, 2024

https://camflow.org

Defining data provenance

• Data provenance examines:
• where data came from;
• what transformations were applied to it; and
• what subsequent data now depends on this data

• Can help analyse any data handling, but in particular:
• Used to ensure reproducibility in experimental workflows
• Employed to checking compliance with policy (e.g., privacy)
• It’s common to reconstruct provenance for post hoc analyses

22COSC312 / COSC412 Lecture 12, 2024

DIFC for provenance tracking

• DIFC provides a means to track data provenance
• Use labels to propagate provenance metadata dynamically

• Provenance can be examined at runtime giving:
• (1) reduced log storage requirements; (2) responsive alerts

• Applied CamFlow IFC engine to provenance tracking
• CamFlow already provides kernel and user-space functionality
• Application-level semantics can guide provenance filtering

23COSC312 / COSC412 Lecture 12, 2024

CamQuery is our provenance engine

• A CamFlow module that effects provenance capture
• Efficient run-time graph queries
• Can use W3C standard PROV representation

• Demonstrated its use within the security domain
• Kernel-mode operation can apply policy rules proactively

• Code is available via the CamFlow project on GitHub
• Including demos too, to ease your adoption of the code

24COSC312 / COSC412 Lecture 12, 2024

Accountability of cloud computing

• Recent surges: cloud; AI/ML unregulated by law/state
• … but have far-reaching effect: privacy, democracy, security

• EU General Data Protection Regulation
• Finally, far-reaching effect in terms of responsible computing
• Now the Digital (Services|Markets) Act (DSA & DMA)

• Dagstuhl Seminar 18181: Towards accountable systems
• Brought together CS, law, and experts in public policy

25COSC312 / COSC412 Lecture 12, 2024

Accountability Engineering

• Abstractions are needed to bring accountability into of
computing—accountability engineering

•Want to add accountability monitors to software:
• Monitor uses dynamic provenance to check application state
• Focuses run-time feature extraction from software behaviour

• Decentralised accountability could use blockchain…
• … but permissioned blockchains, preferably

26COSC312 / COSC412 Lecture 12, 2024

In summary

• Discussed vulnerabilities considered most often abused

• Presented emerging capability hardware

• Outlined developments in data flow security including
decentralised information flow control

• Described the CamFlow provenance system

• Highlighted that accountability engineering will be
increasingly needed within future computing systems

27COSC312 / COSC412 Lecture 12, 2024

