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Learning objectives

• Appreciate that hardware support for software security 
is continuing to evolve 

• Understand usefulness of emerging capability models 
in hardware and software 

• Outline how data flow security can be effected using 
decentralised information flow control 

• Explain the increasing need for accountability, 
including data provenance
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Approximate ranking of vulnerabilities 1/2

• Vulnerable dependencies 
• Late application of software updates; zero-day attacks 

• Handling user input 
• buffer-based attacks (e.g., buffer overflow) 
• SQL injection 
• XSS—cross site scripting; e.g., effects akin to session hijacking 
• Unauthorised directory traversal 
• DoS—i.e., denial of service
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Approximate ranking of vulnerabilities 2/2

• Failing to apply principle of least privilege (POLP) 
• APIs that are too open regarding permissions 
• Privilege escalation—lack of defence in depth 
• Insider threats / phishing—again, lack of defence in depth 

• System misconfiguration / design errors 
• Missing application of encryption 
• Missing access control checks 
• Cloud specific risks: understanding shared security responsibility 
• e.g., policy errors (open S3 buckets), vulnerability checking, etc.
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Emerging CPU hardware-based security

• Intel SGX provides for ‘enclaves’ of secure software 
• RAM content only ever decrypted when on CPU die 
• First revision had limits on memory volume within enclaves 
• SGX upholds confidentiality, integrity, but not availability 
• Only for user-space code: no system call support 
• Involved in research ‘porting’ Docker to use SGX: 
• Get around userspace limitation by using a library operating system 
• Performance boosted by minimising enclave entry/exit transitions 

• SGX is coarse-grained protection, unlike capabilities…
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Hardware-supported memory capabilities

• Mentioned capabilities within software: 
• As a collection of privileges a particular principal holds 
• Taken into programming within the E programming language 

• Capability machines add support within CPU hardware 
• All use of memory capabilities will be checked for valid use 
• e.g., has effect of bounds-checking all pointer accesses 
• … where bounds-checks can be fine-grained, e.g., byte granularity 

• Cannot miss access control checks (if no hardware bugs)
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Cambridge CAP computer (1976)

• CAP had hardware capabilities: 
• capability unit with 64 cap. registers 

• Each capability contains: 
• Base memory address 
• Limit to the range accessible 
• Access permission bits 
• R/W to memory; also R/W to capabilities 

• Memory up to 64K 32-bit words 
• Access to memory required capability
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Cambridge CHERI development

• That’s Capability Hardware Enhanced RISC Instructions 
• i.e., a RISC CPU with an extended instruction set architecture 

• CHERI is a hybrid capability architecture: 
• CHERI can run legacy code as well as ‘pure’ capability code 
• Pragmatic choice: pure-cap requires significant reengineering 
• Legacy code’s memory access wrapped in default capabilities 

• CHERI can be run in many ways: 
• e.g., within the QEMU emulator; also on FPGA; and…
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Arm Morello within UK DSbD programme

• Morello is a limited-supply evaluation system from Arm 
• (DSbD: Digital Security by Design, UK Gov.’s industry support) 
• Includes a modified Neoverse N1 system-on-chip (superscalar) 
• Arm’s Neoverse CPU designs are their pitch for data centres 

• Aim is to allow realistic testing of capability software 

• CheriBSD (cap-aware FreeBSD) is supported on Morello 
• … also efforts made to port of Linux and Android 

• Meanwhile work also proceeding on RISC-V support
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CHERI’s (memory) capability design

• 64-bit pointers are changed to 128-bit capabilities 
• Capabilities include: address; bounds; permissions 
• Address bounds are compressed—not byte-level granularity 
• Caps. can be ‘sealed’: immutable; can’t be dereferenced 

• CHERI uses bitmap to mark capabilities within RAM 

• Strong security properties: 
• Every CPU load, store and instruction fetch is cap-checked 
• Capabilities can only be derived from existing capabilities 
• Derived capabilities never increase range or permissions
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Rate control

• Intelligence organisations apply rate control protection 
• i.e., avoid rapid exfiltration of data by limiting coms. rates 
• Software answering queries may not need high bandwidth 

• Not much use of rate control in today’s OS software 
• … yet there are many cases of large-scale exfiltration! 

• Fine-grained security hardware, e.g., capabilities may 
provide the means to embed rate control effectively
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Toward more general data flow security

• Event-based software: message passing & processing 
• Near real-time analysis versus store & query RDBMS approach 

• Background: events versus messages? 
• Messages use stateful protocols; explicit routing information 
• Events are self-contained; amenable to content-based routing 

• Off the shelf software: distributed stream processing 
•  automated trading, business activity monitoring, sensor nets.
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Distributed access control

• Recall approx. partition of access control schemes: 
• Discretionary (DAC): owners of resources control privileges 
• Mandatory (MAC): system-wide, consistent rules are applied 

• Distribution adds extra challenges: 
• Revocation of privileges 
• Disseminating and evolving access control policy 
• (Explored some of these challenges within our ‘OASIS’ 

distributed role-based access control system)
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Information flow control (IFC)

• IFC is a form of data-centric mandatory access control 
• Uses security labels: classified, secret, top secret, ... 
• All data items are labelled 
• All security principals operate at a labelled level 
• Simple limiting rules applied consistently: e.g., “no write down” 

• Appealing for end-to-end security properties: 
• Can manage both confidentiality and integrity checking 
• Closely related to taint propagation models
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DIFC and event-based systems

• Decentralised IFC: security label set is managed dynamically 
• Principals can create new labels, and issue privileges over them 

• (D)IFC has been applied in programming languages & OSs 
• e.g., Asbestos (UCLA), Flume (MIT), JIF (Cornell), D-star (Stanford) 

• However event-based systems are also highly compatible 
with (decentralised) information flow control techniques 

• Decentralised Event Flow Control (DEFC): 
• DEFC is a labelling model that works below the granularity of events
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(D)IFC in event-based systems

• Can treat all messages as multi-part structures 
• Apply IFC labelling independently to each part 
• Each part has its own 

data and security label 
• Middleware enforces 

data-linked access 
control to event parts 

• For data transport, an event is an atomic unit 
• External and internal event transport can use different technologies
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DEFCon: a DEFC prototype

• Trusted engine handles lifecycle of event proc. units 
• Engine also manages the lifecycle of security labels 
• Tracks which units are operating with which label privileges 
• Tracks labelling 

of data
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DEFCon case study: pairs trading

• Pairs trading is a simple algorithm for stock trading 
• Assume that stocks in a related market will move in a related way 
• Look for divergence and bet on divergence soon reducing 

• Modern exchanges are electronic, event-based systems: 
• Orders are quick transactions, pub/sub for dissemination of stocks 

• Competition in the market makes it very latency sensitive 
• Co-host trading algorithms on server co-located with exchange 

• Large brokers can offer ‘dark pools’: avoids exchange
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DEFCon case study: pairs trading

• Used DIFC to support safely co-located pairs trading 
• Protection of market data integrity 
• Strict control of interactions between clients’ investment strategies 
• Ensure confidentiality of orders in ‘dark pool’ trading 
• Bulk-move equities without revealing trader’s identity 

• Allow auditing by regulatory authorities on completed transactions 

• Treating stock-exchange hosting as a ‘cloud’ (in effect) 

• DIFC protects traders’ strategies while efficiently utilising 
infrastructure
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CamFlow—IFC in Linux kernel

• SmartFlow project—DIFC engine confined to JVM 
• Useful proof-of-concept, but can’t work with legacy software 

• CloudSafetyNet project—built CamFlow DIFC engine 
• Linux kernel implementation written by Thomas Pasquier 
• Freely available as open source via https://camflow.org 

• CamFlow has an explicit IFC API for new codebases… 

•… but it can also apply policy to existing codebases
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Defining data provenance

• Data provenance examines: 
• where data came from; 
• what transformations were applied to it; and 
• what subsequent data now depends on this data 

• Can help analyse any data handling, but in particular: 
• Used to ensure reproducibility in experimental workflows 
• Employed to checking compliance with policy (e.g., privacy) 
• It’s common to reconstruct provenance for post hoc analyses
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DIFC for provenance tracking

• DIFC provides a means to track data provenance 
• Use labels to propagate provenance metadata dynamically 

• Provenance can be examined at runtime giving: 
• (1) reduced log storage requirements; (2) responsive alerts 

• Applied CamFlow IFC engine to provenance tracking 
• CamFlow already provides kernel and user-space functionality 
• Application-level semantics can guide provenance filtering
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CamQuery is our provenance engine

• A CamFlow module that effects provenance capture 
• Efficient run-time graph queries 
• Can use W3C standard PROV representation 

• Demonstrated its use within the security domain 
• Kernel-mode operation can apply policy rules proactively 

• Code is available via the CamFlow project on GitHub 
• Including demos too, to ease your adoption of the code
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Accountability of cloud computing

• Recent surges: cloud; AI/ML unregulated by law/state 
• … but have far-reaching effect: privacy, democracy, security 

• EU General Data Protection Regulation 
• Finally, far-reaching effect in terms of responsible computing 
• Now the Digital (Services|Markets) Act (DSA & DMA) 

• Dagstuhl Seminar 18181: Towards accountable systems 
• Brought together CS, law, and experts in public policy
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Accountability Engineering

• Abstractions are needed to bring accountability into of 
computing—accountability engineering 

•Want to add accountability monitors to software: 
• Monitor uses dynamic provenance to check application state 
• Focuses run-time feature extraction from software behaviour 

• Decentralised accountability could use blockchain… 
• … but permissioned blockchains, preferably
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In summary

• Discussed vulnerabilities considered most often abused 

• Presented emerging capability hardware 

• Outlined developments in data flow security including 
decentralised information flow control 

• Described the CamFlow provenance system 

• Highlighted that accountability engineering will be 
increasingly needed within future computing systems
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