Hardware support for
software security
& emerging technology

COSC312 / COSCA412

Learning objectives

* Appreciate that hardware support for software security
IS contfinuing to evolve

* Understand usefulness of emerging capability models
IN hardware and software

* Outline how data flow security can be effected using
decenftralised information flow conftrol

* Explain the Increasing need tor accountability,
iINncluding data provenance

Approximate ranking of vulnerabilities 1/2

* Vulnerable dependencies
* Late application of software updates; zero-day attacks

* Handling user input
* pbuffer-based attacks (e.q., butter overtlow)
* SQL injection
* XSS—-cross site scripting; e.qg., effects akin to session hijacking
* Unauthorised directory traversal
* DoS—l.e., denial of service

COSC312 7/ COSC412 Lecture 12, 2024

Approximate ranking of vulnerabilities 2/2

* Falling to apply principle of least privilege (POLP)
* APIs that are too open regarding permissions
* Privilege escalation—Ilack of defence in depth
* Insider threats / phishing—again, lack of defence in depth

* System misconfiguration / design errors
* Missing application of encryption
* Missing access confrol checks

* Cloud specitic risks: understanding shared security responsibility

* e.g., policy errors (open S3 buckets), vulnerability checking, etc.
COSC312 / COSC412 Lecture 12, 2024

Emerging CPU hardware-based security

* Intel SGX provides for ‘enclaves’ of secure software

* RAM content only ever decrypted when on CPU die
* First revision had limits on memory volume within enclaves
* SGX upholds confidentiality, integrity, but not availability

* Only for user-space code: no system call support
* Involved in research ‘porting’ Docker to use SGX:
* Get around userspace limitation by using a library operatfing system
* Performance boosted by minimising enclave entry/exit fransitions

* SGX Is coarse-grained protection, unlike capabillities...
COSC312 / COSC412 Lecture 12, 2024 5

Hardware-supported memory capabilities

* Mentioned capabillities within software:

* As a collection of privileges a particular principal holds
* Taken intfo programming within the E programming language

* Capability machines add support within CPU hardware

* All use of memory capabillities will be checked for valid use
* e.g., has effect of bounds-checking all pointer accesses
* ... Where bounds-checks can be fine-grained, e.g., byte granularity

* Cannot miss access control checks (if no hardware bugs)

COSC312 /7 COSC412 Lecture 12, 2024 6

Cambridge CAP computer (1976)

= CAP COMPUTER

* CAP had hardware capabilities:

* capabilility unit with 64 cap. registers

* Each capabllity contains:
* Base memory address
* Limit to the range accessible

* Access permission DIts
e R/W to memory; also R/W to capabllities

* Memory up to 64K 32-bit words

* Access to memory required capabllity
COSC312 / COSCA412 Lecture 12, 2024—CC BY-SA image by User:Daderot from Wikipedia /

https://en.wikipedia.org/wiki/CAP_computer#/media/File:CAP_Computer_(general_view)_-_Cambridge_University.JPG
https://commons.wikimedia.org/wiki/User:Daderot

Cambridge CHERI development

* That's Capability Hardware Enhanced RISC Instructions
* I.e., a RISC CPU with an extended instruction set architecture

* CHERI'I1s a hybrid capability architecture:

* CHERI can run legacy code as well as ‘pure’ capabillity code
* Pragmatic choice: pure-cap requires significant reengineering
* Legacy code’s memory access wrapped in default capabillities

* CHERI can be run iIn many ways:

* e.g., within the QEMU emulator; also on FPGA; and...
COSC312 / COSC412 Lecture 12, 2024

Arm Morello within UK DSbD programme

* Morello is a Iimited-supply evaluation system from Arm
* (DSbD: Digital Security by Design, UK Gov.'s industry support)

* Includes a modified Neoverse N1 system-on-chip (superscalar)
* Arm’s Neoverse CPU designs are their pitch for data centres

* Aim Is fo allow realistic testing of capability software

* CheriBSD (cap-aware FreeBSD) Is supported on Morello
* ... also efforts made to port of Linux and Android

* Meanwhile work also proceeding on RISC-V support
COSC312 / COSC412 Lecture 12, 2024

CHERI’'s (memory) capability design

* 64-bit pointers are changed to 128-bit capabilities

* Capabillities include: address; bounds; permissions
* Address bounds are compressed—not byte-level granularity
* Caps. can be ‘sealed’: immutable; can’t be dereferenced

* CHERI uses bitmap to mark capabilities within RAM

* Strong security properties:

* Every CPU load, store and instruction fetch Is cap-checked

* Capabillities can only be derived from existing capabllities
* Derived capabillities never increase range or permissions

COSC312 /7 COSC412 Lecture 12, 2024 10

Rate control

* Intelligence organisations apply rate control protection
* |.e., avoid rapid exfiltration of data by limiting coms. rates
* Software answering gueries may not need high bandwidth

* Not much use of rate control in today’s OS software
* ... yet there are many cases of large-scale exfiliration!

* Fine-grained security hardware, e.g., capabillities may
orovide the means to embed rate control effectively

Toward more general data flow security

* Event-based software: message passing & processing
* Near real-time analysis versus store & query RDBMS approach

* Background: events versus messagese

* Messages use stateful protocols; explicit routing information
* Events are selt-contained; amenable 1o conftent-lbased routing

* Off the shelf software: distributed stream processing
* automated trading, business activity monitoring, sensor nefs.

COSC312 /7 COSC412 Lecture 12, 2024 12

Distributed access control

* Recall approx. partition of access control schemes:

* Discretionary (DAC): owners of resources control privileges
* Mandatory (MAC): system-wide, consistent rules are applied

* Distribution adds extra challenges:
* Revocation of privileges
* Disseminating and evolving access control policy

* (Explored some of these challenges within our "OASIS’
distributed role-based access control system)

Information flow control (IFC)

* [FC Is a form of data-centric mandatory access control

* Uses security labels: classitied, secret, top secret, ...
* All data items are labelled

* All security principals operate at a labelled level
* Simple limiting rules applied consistently: e.g., 'no write down”

* Appealing for end-to-end security properties:
 Can manage both confidentiality and intfegrity checking
* Closely related to taint propagation models

COSC312 /7 COSC412 Lecture 12, 2024 14

DIFC and event-based systems

* Decentralised IFC: security label set iIs managed dynamically
* Principals can create new labels, and issue privileges over them

* (D)IFC has been applied in programming languages & OSs
* e.g., Asbestos (UCLA), Flume (MIT), JIF (Cornell), D-star (Stanford)

* However event-based systems are also highly compatible
with (decentralised) information flow control fechnigues

* Decentralised Event Flow Control (DEFC):
* DEFC is a labelling model that works below the granularity of events

(D)IFC in event-based systems

* Can freat all messages as multi-part structures
* Apply IFC labelling iIndependently to each part
* Each part has its own

. c name data integrity tags confidentiality tags
O
data and secuvrity label $ ype bd | fitrader77! -
* Middleware entorces body .| {itrader-77} {dark-pool} Corts
dQTQ—Hﬂked Aaccess trader_id | trader-77| {i-trader-77} |{dark-pool,s-trader-77}
N— _/
control fo event parts —

security label

* For data fransport, an event is an atomic unit
* External and infernal event transport can use different fechnologies

COSC312 7/ COSC412 Lecture 12, 2024 16

DEFCon: a DEFC prototype

* Trusted engine handles lifecycle of event proc. units

* Engine also manages the lifecycle of security labels
* Tracks which units are operating with which label privieges

* Tracks labelling

endorsement } fvileqes endorsement } vileqes endorsement } fvileqes
Of dOTQ declassification P d declassification P J declassification P J
Unit 1 Processing Unit 2 Processing Unit 3 Processing
ni Logic ni Logic nt Logic

— Input label | Output label - 4 Input label | Output label - ™ Input label | Output label

Event ~— < Event ‘\%EV*
~—

DEECon Engine ‘L—>[Event Dispatcher]

DEFCon case study: pairs trading

* Pairs tfrading is a simple algorithm for stock trading

* Assume that stocks in a related market will move in a related way
* Look for divergence and bet on divergence soon reducing

* Modern exchanges are electronic, event-based systems:
* Orders are quick transactions, pub/sub for dissemination of stocks

* Competition in the market makes it very latency sensitive
* Co-host trading algorithms on server co-located with exchange

* Large brokers can offer ‘dark pools’': avoids exchange

COSC312 /7 COSC412 Lecture 12, 2024 18

DEFCon case study: pairs trading

* Used DIFC to support safely co-located pairs trading
* Protection of market data integrity
* Strict control of interactions between clients’ investment strategies

* Ensure confidentiality of orders in ‘dark pool’ frading
* Bulk-move equities without revealing frader’s identity

* Allow auditing by regulatory authorities on completed transactions

* Treating stock-exchange hosting as a ‘cloud’ (in effect)

* DIFC protects traders’ strategies while efficiently uftilising
Infrasftructure

COSC312 /7 COSC412 Lecture 12, 2024 19

Bid
sell: MSFT
price: 1234%
name: Trader 1

owns s Match
v __ 1 buy: GOOG
Stock Tick sell: MSFT
Exchange MSFT mean: 1.92
1234% -
12:32:13 | owns 7,
L — ®
|| Pair Monitor Monitor o y
secrecy: 1. |l symbol1: GOOG Trader 1
S | symbol2: MSFT <
sd: ... ’T‘
.]
MTécFlfI' Monitor owns 7,
-1 12308 12 Pair Monitor SphnlelllE CIO0E ? Vv
10:00-13 —— |~ symbol2: MSFT ==
L _ secrecy: t, |[< :
KEY: T |

= | .
— T that it cannot declassify
| | Tagged by
_ Event !___JTrader1

Unit that can declassify
all of its state

Unit that cannot declassify
any of its state

Unit that has some state

buy: MSFT

sell: GOOG
mean: 1.92

Tagged by
Trader 2

Warning
msg: Trading volume &3

exceeded quota

Trade
price: 1234%
symbol: MSFT

' buyer: Trader 1

seller: Trader 2

Ask
buy: MSFT
price: 1234%

name: Trader 2

owns b

Broker

o Pairs trading event model

owns r,s
¢ '

Delegation
user: Trader 2

Regulator

COSC312 7/ COSC412 Lecture 12, 2024

20

CamFlow —IFC in Linux kernel

* SmartFlow project—DIFC engine confined to JVM
* Useful proof-of-concept, but can’t work with legacy software

* CloudSafetyNet project—built CamFlow DIFC engine
* Linux kernel implementation written by Thomas Pasquier
* Freely available as open source via https://camflow.org

* CamFlow has an explicit IFC APl for new codebases...
* ... but it can also apply policy to existing codebases

https://camflow.org

Defining data provenance

* Data provenance examines:

* where data came from;
* what transtormations were applied to it; and
* what subsequent data now depends on this data

* Can help analyse any data handling, but in particular:

* Used to ensure reproducibility in experimental workflows
* Employed to checking compliance with policy (e.q., privacy)
* |[t's common fo reconstruct provenance for post hoc analyses

COSC312 /7 COSC412 Lecture 12, 2024 22

DIFC for provenance tracking

* DIFC provides a means to frack data provenance
* Use labels to propagate provenance metadata dynamically

* Provenance can be examined at runtime giving:
* (1) reduced log storage requirements; (2) responsive alerts

* Applied CamFlow [FC engine to provenance fracking
* CamFlow already provides kernel and user-space functionality
* Application-level semantics can guide provenance filtering

CamQuery is our provenance engine

* A CamFlow module that eftfects provenance capture
* Efficient run-time graph queries
* Can use W3C standard PROV representation

* Demonstrated its use within the security domain
* Kernel-mode operation can apply policy rules proactively

* Code is available via the CamFlow project on GitHub
* Including demos oo, to ease your adoption of the code

COSC312 /7 COSC412 Lecture 12, 2024 24

Accountability of cloud computing

* Recent surges: cloud; Al/ML unregulated by law/state
* ... but have tfar-reaching effect: privacy, democracy, security

* EU General Data Protection Regulation

* Finally, far-reaching eftect in terms of responsible computing
* Now the Digital (Services | Markets) Act (DSA & DMA)

* Dagstuhl Seminar 18181: Towards accountable systems
* Brought together CS, law, and experts in public policy

COSC312 /7 COSC412 Lecture 12, 2024 25

Accountability Engineering

* Abstractions are needed to bring accountabillity info of
computing—accountability engineering

* Want to add accountability monitors to software:

* Monitor uses dynamic provenance to check application state
* Focuses run-time feature extraction from software behaviour

* Decentralised accountabillity could use blockchain...
* ... but permissioned blockchains, preferably

In summary

* Discussed vulnerabilities considered most often abused
* Presented emerging capability hardware

* Qutlined developments in data flow security including
decenftralised information flow control

* Described the CamFlow provenance sysitem

* Highlighted that accountability engineering will be
INncreasingly needed within future computing systems

