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Learning objectives

• Choice of programming language can affect security

• … although choice of PL is almost certainly not a panacea


• High level view of causes of PL/software security issues

• Provide a roadmap into which to fit common attack types


• Many software security checks can be regimented

• Also that there are many, many vectors for security attacks!
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Typical computing machine model

• Programming language security depends on machine:

• we’ll assume typical von Neumann architecture depicted


• CPU runs imperative code


• I/O devices (input/output)


• Memory (code and data)

• hierarchy of memory levels


• First we’ll focus on CPU behaviour
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Security from machine model’s perspective

• Risks in terms of the CPU going awry:

• Space—CPU interacts with memory in unintended manner

• e.g., ‘buffer overrun’—a data structure overflows its allocation


• Time—CPU interacts with resources no longer validly, e.g.,

• ‘use after free’—a resource that was deallocated is used

• ‘TOCTOU’ races—security property check decoupled from use


• Both approaches can affect either/or:

• code: CPU ends up running software it shouldn’t

• data: CPU reads and/or writes data that it shouldn’t
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Memory model for programming

• CPU’s machine code needn’t be procedure oriented:

• e.g., code can (potentially conditionally) jump to other code


• Programming languages (PLs) usually more structured:

• Stack: FIFO; memory use lifecycle connected to PL functions

• Heap: memory use lifecycle decoupled from program flow


• CPUs very likely to support call stack explicitly

• e.g., dedicated CPU registers for managing stack frames
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Heap-based (space) attacks

• Consider a C program that malloc’s two 16 byte arrays

• These arrays will be allocated on the heap (by libc and OS)

• Pretend the arrays are allocated in sequential addresses


• Buffer overflow attack: (oversimplified)

• If read/write index to first array not bounds checked to be <16

• … then reads/writes on first array actually affect second array


• Real instances have overwritten program code rather than data


• strcpy copies C strings without bounds check; use strlcpy !
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Stack-based (space) attacks

• Call stack pertains to code & data

• Data: local variables, parameters

• Code relevant: return address


• Buffer overflow a local variable?

• potentially rewrite return address

• function returns control to attacker’s code


• Note: stack address growth direction is CPU-dependent

• x86 grows downwards (overflow of locals will reach return addr.)
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Operating system (OS) memory protection

• Most CPUs have a memory management unit (MMU)

• Exception is old architectures and smaller embedded systems


• MMU implements usage restrictions on memory pages

• Pages are often 4KiB blocks of memory

• Effects isolation of different operating system processes

• Also separates applications from underlying OS kernel


• Privilege escalation attacks: into kernel from user code
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Stop code being executed from data pages

• Execution space protection: split code/data memory

• Prevents data pages having code executed from them

• Represents OS+CPU increasingly locking down memory

• Must couple with address space layout randomisation (ASLR)


• OS loader configures memory protection for app.

• Application built with clearly separated regions (c.f., ELF)


• Mitigates attacks where buffer overrun modifies code

• CPU capability: NX bit in AMD and XD bit in Intel CPUs
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Code gadgets—attacks using existing code

• Execution space prot. stops attacker injecting code

• … however there’s already lots of code on any target system


• Attacker can scan for ‘gadgets’: abuse existing code

• e.g., can jump into the middle of a destructive library function

• may even be able to control parameters for those functions


• Significantly raises the difficulty of performing attacks

• … but many attackers are well resourced, and patient …
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Return oriented programming (ROP)

• Shown that call stack attacks can chain gadgets


• Attacker modifies return address and parameters


• Attacker isn’t introducing code: changing return addr.


• However net effect is close to code injection


• Not straightforward to distinguish attacks

• solutions have proposed integrity checks on return addresses

• … but need to ensure that overheads are worth the expense
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Vulnerabilities from parsing bugs

• Parsing structured data from simpler data can be risky:

• Typical example, SQL injection (see next slide)

• … but also watch entities such as file paths stored in strings


• Many forms of data parsing are commonplace, e.g.:

• XML documents

• Unicode strings—e.g., UTF-8

• URIs—e.g., wherein spaces are replaced by %20 within in URLs

• Serialisation of program objects (e.g., Java, Python, …)
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SQL injection

• (You’ve likely encountered this concept previously…)


•Want to submit query to database, code builds a string


• However SELECT * FROM t WHERE t.name='$VAR' is risky:

• $VAR needs to be checked to stop it escaping SQL statement

• e.g., $VAR should not contain single quotes

• consider $VAR being Robert'; DROP TABLE t (c.f. XKCD comic 327) 


• A solution: SQL prepared statements (? is placeholder)

• SELECT * FROM t WHERE t.name=?—later bind variable to ?
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File paths and potential security risks

• Common practice to store file paths in string variables

• Pain may be on offer regarding directory separator slash style


• Actually, paths are far more subtle than string suggests

• Most operating systems can mount filesystems at any subpath

• Different parts of one path string may be case sensitive or not!


• Another risk area: simplification using lexical processing

• e.g., thisDir/aDir/../otherDir—what if aDir is a symlink?
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XML vulnerabilities

• Be careful parsing untrusted source code, here for XML

• Entity attacks, such as “Billion Laughs”:


• <!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;"> etc.

• Very small file can easily explode to occupy impractical resources


• External entity resolution: parser looks up remote URLs / files

• XSLT is Turing complete! (XML stylesheet transformation)


• Use an existing parser implementation

• … and continue installing its (likely many) security updates
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Unicode handling can cause security issues

• Unicode: standard representing language characters

• UTF-8 is variable-width ASCII-compatible 8-bit encoding

• Upper 128 values include mode shifts to multi-byte characters

• Combining characters affect other characters:

• e.g., <i U+00ED><diaeresis on previous U+0308> versus <ï U+00EF>


• normalisation required to switch to longest / shortest form


• Security risk can relate to visual confusion or encoding

• e.g., normalisation failure may lead to incorrect equality tests

• Further risks when embedded in other forms, e.g., URI encoding
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PL support for secure parsing

• Some PL syntax can include XML directly, e.g., Scala

• Scala’s parser accepts XML as the RHS of assignment:

• var myVariable = <p>A simple XML tree</p>


• (Scala is used in industry: e.g., LinkedIn, Twitter, Airbnb, Netflix, …)


• PLs may also help security of processing Unicode:

• e.g., Apple’s Swift language ensures Unicode-correct handling

• Would be non-idiomatic code to look at Swift string’s bytes


• (Past project of mine added SQL&XML parsing to Python!)
17COSC312 / COSC412 Lecture 11, 2023



Programming language choices for security

• Some situations require use of low-level, ‘unsafe’ PLs

• e.g., directly driving hardware devices may need assembly

• Most mainstream OSs have been largely coded in C/C++


• Applications can choose interpreted or compiled PLs

• Security concerns are different, but both have OS interfaces

• Compiled: result may have have machine code vulnerabilities

• Interpreted: likely rely on ‘foreign’ function interface (e.g., C)

• e.g., Python often effectively logical glue between C code libraries
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Runtime support for managed PLs

• Manually performing memory management is riskier

• … although also necessary for corner cases


• Useful to seek runtime systems that manage resources

• e.g.,  lifecycle of heap objects; OS interactions

• Pay the ‘price’ of not directly controlling CPU with your code


• Java Virtual Machine: garbage collection; serialisation

• JVM is now a target platform for other languages (e.g., Scala)
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Functional programming languages

• Pure functional PLs don’t have intermediate state

• e.g., Haskell—variables are labels, not memory pigeonholes

• … but PLs have to interact with underling OS so pass state to fns:

• Monads wrap functions and return values into efficient pipelines


• Many functional PLs are ‘impure’ with some state

• i.e., state will likely involve mutable data structures


• DNS server ported to OCaml was more efficient than C

• Allowed safe reuse of memory where C code made copies
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D (dlang) programming language

• Builds pragmatic extensions over C++

• Bring desirable high-level functionality to low-level language

• Aims to be as efficient as equivalent C++ but terser and safer

• Still supports inline assembly (unlike C#, Java, etc.)


• Features that help security include integration of:

• Bounds-checked arrays; garbage collection; strings are arrays

• @safe annotation ensures valid lifetime of references

• Compile-time check to preclude use-after-free types of errors

• ‘Better C’ subset removes D runtime, keeps bounds-checking, etc.
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E—OO, secure, distributed PL

• Likely you’ll never see/use E, but it is very well designed


• Method call = sending message to local/remote object

• immediately—essentially like a function call (synchronous)

• deferred—asynchronous, caller gets ‘promise’ immediately


• E objects are capabilities, actually: controls visibility

• Can use sealer/unsealer pairs to lock down object access

• Can include guards to check runtime conditions (balance>=0)
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Rust—low-level PL more secure than C

• Began in Mozilla: e.g., for Servo secure browser (RIP)

• Gaining adoption in Linux kernel alongside C

• Benefits in its use of LLVM compiler framework over C/C++


• Key feature is the notion of ownership typing 

• If caller passes object to callee, caller can’t modify it anymore

• Rust borrow checker: ownership violations are compiler errors 


• Rust provides built-in build system & package manager
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Engineering secure software

• Need security functionality? Use existing libraries!

• e.g., NaCL; XACML; SAML; Kerberos GSS-API

• … you also need to assess dependencies and apply updates


• Apply defence in depth: multiple layers of security

• Interacting with filesystem? Try to add a chroot

• Handling sensitive data? Apply encryption defensively

• Database to be read only? Make it a read-only replica

• Trade off additional computing cost for extra security

• Use short-lived OS processes rather than risking memory leaks

24COSC312 / COSC412 Lecture 11, 2023



In summary

• Described typical machine model and causes for 
security problems in time and space


• Outlined machine code attack & defence evolution

• Discussed numerous common attack vectors


• Indicated how choices of PL can help security

• New languages are still being developed…
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