Programming language &
software security

COSC312 / COSCA412

Learning objectives

* Choice of programming language can affect security
* ... dlthough choice of PL is almost certainly not a panaceo

* High level view of causes of PL/software security issues
* Provide a roadmap info which to fit common attack types

* Many software security checks can be regimented
* Also that there are many, many vectors for security attacks!

Typical computing machine model

* Programming language security depends on machine:
* we'll assume typical von Neumann architecture depicted

O CPU rU nS imperd'l'ive COde Central Processing Unit

+ 1/0O devices (input/output)
» Memory (code and datal)

* hierarchy of memory levels

Output
Device

Memory Unit

* First we'll focus on CPU behaviour

COSC312 / COSC412 Lecture 11, 2023—CC BY-SA image by User:Kapooht on Wikipedio 3

https://commons.wikimedia.org/wiki/File:Von_Neumann_Architecture.svg

Security from machine model’s perspective

* Risks In ferms of the CPU going awry:
* Space—CPU interacts with memory in unintended manner
* e.g., 'butfer overrun’—a data structure overflows its allocation

* Time—CPU inferacts with resources no longer validly, e.q.,
* ‘use after free’'—a resource that was deallocated is used
* 'TOCTOU' races—security property check decoupled from use

* Both approaches can aftect either/or:

* code: CPU ends up running software it shouldn’t

 data: CPU reads and/or writes data that it shouldn’t
COSC312/ COSC412 Lecture 11, 2023

Memory model for programming

* CPU’s machine code needn’t be procedure oriented:
* e.g., code can (potentially condifionally) jump to other code

* Programming languages (PLs) usually more structured:
* Stack: FIFO; memory use lifecycle connected to PL functions
* Heap: memory use lifecycle decoupled from program flow

* CPUs very likely to support call stack explicitly

* e.g., dedicated CPU registers for managing stack frames

COSC312/ COSC412 Lecture 11, 2023

Heap-based (space) attacks

* Consider a C program that malloc’s two 16 byte arrays

* These arrays will be allocated on the heap (by libc and OS)
* Pretend the arrays are allocated in sequential addresses

* Buffer overtlow attack: (oversimplified)

* It read/write index to first array not bounds checked o be <16
* ... Then reads/writes on first array actually affect second array
* Redal instances have overwritten program code rather than data

* strcpy copies C strings without bounds check; use strlcpy !

Stack-based (space) attacks

top of stack

Stack Pointer > \
) Locals of
* Call stack pertains to code & data DrawLine stack frame
: I
» Data: local variables, parameters ™ "™~ > [Refun Address DrawLine
 Code relevant: return address rarame ers for
J
[Locals of
. stack frame DrawSquare
* Butter overilow a local variable¢ / for) ['Retum Address
rawSquare
: : - P ters f
* potentially rewrite return address subroutine raws ;::rjr
* function returns control to attacker’s code)

* Note: stack address growth direction is CPU-dependent
* x86 grows downwards (overflow of locals will reach return addr.)

https://en.wikipedia.org/wiki/Call_stack#/media/File:Call_stack_layout.svg
https://commons.wikimedia.org/wiki/User:Offnfopt

Operating system (OS) memory protection

* Most CPUs have a memory management vnit (MMU)
* Exception is old architectures and smaller embedded systems

* MMU implements usage restrictions on memory pages
* Pages are often 4KiB blocks of memory
* Effects isolation of different operating system processes
* Also separates applications from underlying OS kernel

* Privilege escalation affacks: info kernel from user code

COSC312 / COSC412 Lecture 11, 2023 3

Stop code being executed from data pages

* Execution space protection: split code/data memory

* Prevents data pages having code executed from them
* Represents OS+CPU increasingly locking down memory
* Must couple with address space layout randomisation (ASLR)

* OS loader configures memory protection for app.
* Application bullt with clearly separated regions (c.f., ELF)

* Mitigates attacks where buffer overrun modifies code
* CPU capabillity: NX bit in AMD and XD bit in Intel CPUs

COSC312/ COSC412 Lecture 11, 2023

Code gadgets —attacks using existing code

* Execution space prot. stops attfacker injecting code
* ... however there’s already lots of code on any target system

* Attacker can scan for ‘gadgets’: abuse existing code

* e.g., can jump intfo the middle of a destructive library function
* may even be able fo contfrol parameters for those functions

* Significantly raises the difficulty of performing afttacks
* ... but many attackers are well resourced, and patient ...

COSC312/ COSC412 Lecture 11, 2023 10

Return oriented programming (ROP)

* Shown that call stack attacks can chain gadgets

* Attfacker modifies return address and parameters

* Attacker isn’'t intfroducing code: changing return addr.
* However net effect is close to code injection

* Noft straightforward to distinguish attacks

* solutions have proposed integrity checks on return addresses
* ... but heed to ensure that overneads are worth the expense

COSC312/ COSC412 Lecture 11, 2023 11

Vulnerabilities from parsing bugs

* Parsing structured data from simpler data can be risky:

* Typical example, SQL injection (see next slide)
* ... but also watch entities such as file paths stored in strings

* Many forms of data parsing are commonplace, e.g.:
* XML documents
* Unicode strings—e.g., UTF-8
* URIs—e.g., wherein spaces are replaced by %20 within in URLs
* Serialisation of program objects (e.g., Java, Python, ...)

COSC312/ COSC412 Lecture 11, 2023

12

SQL injection

* (You've likely encountered this concept previously...)
* Want to submit query to database, code builds a string

* However SELECT * FROM t WHERE t.name="'$VAR' IS risky:

* $VAR needs to be checked 1o stop it escaping SQL statement

* e.g., $VAR should not contain single quotes
* consider $VAR being Robert'; DROP TABLE t (c.f. XKCD comic 327)

* A solution: SQL prepared statements (7 is placeholder)
* SELECT x FROM t WHERE t.name=?—Iater bind variable to 7

File paths and potential security risks

* Common practice to store file paths in string variables
* Pain may be on offer regarding directory separator slash style

* Actually, paths are far more subtle than sfring suggests

* Most operating systems can mount filesystems at any subpath
* Different parts of one path string may be case sensitive or not!

* Another risk area: simplification using lexical processing
* e.g., thisDir/aDir/../otherDir—what it aD1ir is a symlinke

XML vulnerabilities

* Be careful parsing untrusted source code, here for XML

* Entity attacks, such as “Billion Laughs’:
* <!ENTITY 1019 "&lo18;&1018;&1018;&1018;&1018;&1018;&1018;&1018;"> €fC.
* Very small file can easily explode to occupy impractical resources

* External entity resolution: parser looks up remote URLs / files
* XSLT is Turing complete! (XML stylesheet transtormation)

* Use an existing parser mplementation
* ... and confinue installing its (likely many) security updates

Unicode handling can cause security issues

* Unicode: standard representing language characters
* UTF-8 Is variable-width ASCIl-compatible 8-bit encoding

* Upper 128 values include mode shifts to multi-byte characters

* Combining characters affect other characters:
* e.g., <I U+00ED><diaeresis on previous U+0308> versus <I U+00OEF>
* normalisation required to switch to longest / shorfest form

* Security risk can relate to visual confusion or encoding
* e.g., normalisation failure may lead to Incorrect equality tests

* Further risks when embedded in other forms, e.g., URlI encoding
COSC312 / COSC412 Lecture 11, 2023 16

PL support for secure parsing

* Some PL synfax can include XML directly, e.g., Scala

* Scala’s parser accepts XML as the RHS of assignment:
« var myVariable = <p>A simple XML tree</p>

* (Scalais used in industry: e.qg., Linkedln, Twitter, Airbnb, Neftilix, ...)

* PLs may also help security of processing Unicode:
* e.g., Apple’s Swift language ensures Unicode-correct handling
* Would be non-idiomatic code to look at Swift string’s bytes

* (Past project of mine added SQL&XML parsing fo Pythonl)

Programming language choices for security

* Some situations require use of low-level, ‘unsafe’ PLs

* e.q., directly driving hardware devices may need assembly
* Most mainstream OSs have been largely coded in C/C++

* Applications can choose interpreted or compiled PLsS
* Security concerns are different, but both have OS interfaces
* Complled: result may have have machine code vulnerabillities

* Interpreted: likely rely on ‘foreign’ function interface (e.g., C)
* e.g., Python often effectively logical glue between C code libraries

COSC312/ COSC412 Lecture 11, 2023 18

Runtime support for managed PLs

* Manually performing memory management is riskier
* ... dlthough also necessary for corner cases

* Usetul to seek runtime systems that manage resources
* e.q., litecycle of heap objects; OS intferactions
* Pay the ‘price’ of not directly controling CPU with your code

* Java Virtual Machine: garbage collection; serialisation
* JVMIs now a target platform for other languages (e.qg., Scala)

COSC312/ COSC412 Lecture 11, 2023 19

Functional programming languages

 Pure functional PLs don’t have intermediate state

* e.g., Haskell—variables are labels, not memory pigeonholes

* ... but PLs have 1o interact with underling OS so pass state to tns:
* Monads wrap functions and return values into efficient pipelines

* Many functional PLs are ‘impure’ with some statfe
* .e., state will likely involve mutable data structures

* DNS server ported to OCaml was more efficient than C

* Allowed safe reuse of memory where C code made copies
COSC312 / COSC412 Lecture 11, 2023 20

D (dlang) programming language

* Bullds pragmatic extensions over C++

* Bring desirable high-level functionality to low-level language
* AIms to be as efficient as equivalent C++ but terser and safer
* Still supports inline assembly (unlike C#, Java, etfc.)

* Features that help security include infegration of:
* Bounds-checked arrays; garbage collection; strings are arrays

* @safe annotation ensures valid lifetime of references
* Complle-time check to preclude use-after-free fypes of errors

* ‘Better C’ subset removes D runtime, keeps bounds-checking, efc.
COSC312 / COSC412 Lecture 11, 2023 2]

E—OQ, secure, distributed PL

* Likely you'll never see/use E, but it is very well designed

* Method call = sending message o local/remote object
* iImmediately—essentially like a function call (synchronous)
* deferred—asynchronous, caller gets ‘promise’ immmediately

* E objects are capabilities, actually: controls visibility

* Can use sealer/unsealer pairs 1o lock down object access
* Can include guards to check runtime conditions (balance>=0)

Rust—low-level PL more secure than C

* Began in Mozilla: e.q., for Servo secure browser (RIP)
* Gaining adoption in Linux kernel alongside C
* Benefits In ifs use of LLVM compiler framework over C/C++

* Key feature Is the notion of ownership typing

* If caller passes object to callee, caller can’t modify It anymore
* Rust borrow checker: ownership violations are compiler errors

* Rust provides bullt-in build system & package manager

COSC312 / COSC412 Lecture 11, 2023 23

Engineering secure software

* Need security functionalitye Use existing libraries!
* e.g., NaCL; XACML; SAML; Kerberos GSS-API
* ... You also heed to assess dependencies and apply updates

* Apply defence in depth: multiple layers of security
* Inferacting with filesysteme Try to add a chroot
* Handling sensitive datae Apply encryption defensively
* Database to be read onlye Make It a read-only replica

* Trade off additional computing cost for extra security
* Use short-lived OS processes rather than risking memory leaks

In summary

* Described typical machine model and causes for
security problems in fime and space

* Qutlined machine code attack & defence evolution
* Discussed numerous common attack vectors

* Indicated how choices of PL can help security
* New languages are still being developed...

