

Blockchain and sensible Web3

COSC312 / COSC412

Learning objectives

- Explain how Web3 seeks to build decentralised systems
 - Likely relies on peer-to-peer networking (decentralised)
 - Uses open blockchain systems such as bitcoin, Ethereum
- Gain a high-level view of blockchain approaches and beyond cryptocurrencies, e.g., how they support decentralised autonomous systems

Can sketch what NFTs are & how they use blockchains

Nodes in bitcoin network

- There are four main roles nodes can take on:
 - Network—all nodes help routing within the p2p protocol
 - Wallet—manage keys that show ownership of transactions
 - Miner—participate in the proof-of-work block verifications
 - Blockchain—can carry the full blockchain
- Bitcoin Core reference client contains all four functions
 - Miners may leave out wallet
 - Lightweight wallet only has wallet and network components
 - Some nodes may store blockchain, but not do mining

Content of bitcoin transactions

- No persistent coins: serial numbers are transaction hashes
- Transaction specifies a number of inputs and outputs, with inputs usually previous transactions
 - can output back to yourself, thus pocketing 'change'
 - remainder of input, after subtracting output, is transaction fee
- Since all transactions are in the blockchain:
 - can search back in time to find transaction:
 - either genesis block (50 bitcoin) or a coinbase mining reward

bitcoin: anonymity, privacy and value

- bitcoin has been discussed as being anonymous
 - This makes little sense—the entire ledger is available publicly!
 - However it is true that public keys need not be identified
- Linkability concerns: metadata may allow subsequent determination of wallet's owners
 - Large state organisations likely want to do this,
 - e.g., law enforcement
- State players globally key to bitcoin's exchange value

bitcoin scalability challenges

- Originally, blocks had no size limit, but that risks DoS
 - Added a limit that blocks can only be 1 megabyte at most
- Blocksize limit has caused scalability problems:
 - Provides for fewer than ten transactions per second
 - Around ten minutes to add a block to blockchain
 - Thus bitcoin transactions can take hours to confirm
- Segregated Witness (SegWit) approx. doubles size
 - Moves witness signature out of transaction blocks

Many more aspects of bitcoin not discussed

- bitcoin blocks also include management parameters:
 - e.g., version numbers to allow the protocol to be modified
 - Versioning is very important given that the protocol behaviour is the fundamental basis on which cryptocurrencies are built
- bitcoin specifies transactions with a scripting language
 - P2PKH—'pay to public key hash' is a common transaction
 - 'multisig' transactions allow m-of-n public key sign-off
 - Smart contracts can be encoded, beyond money transfer

Peer-to-peer networking for scalability

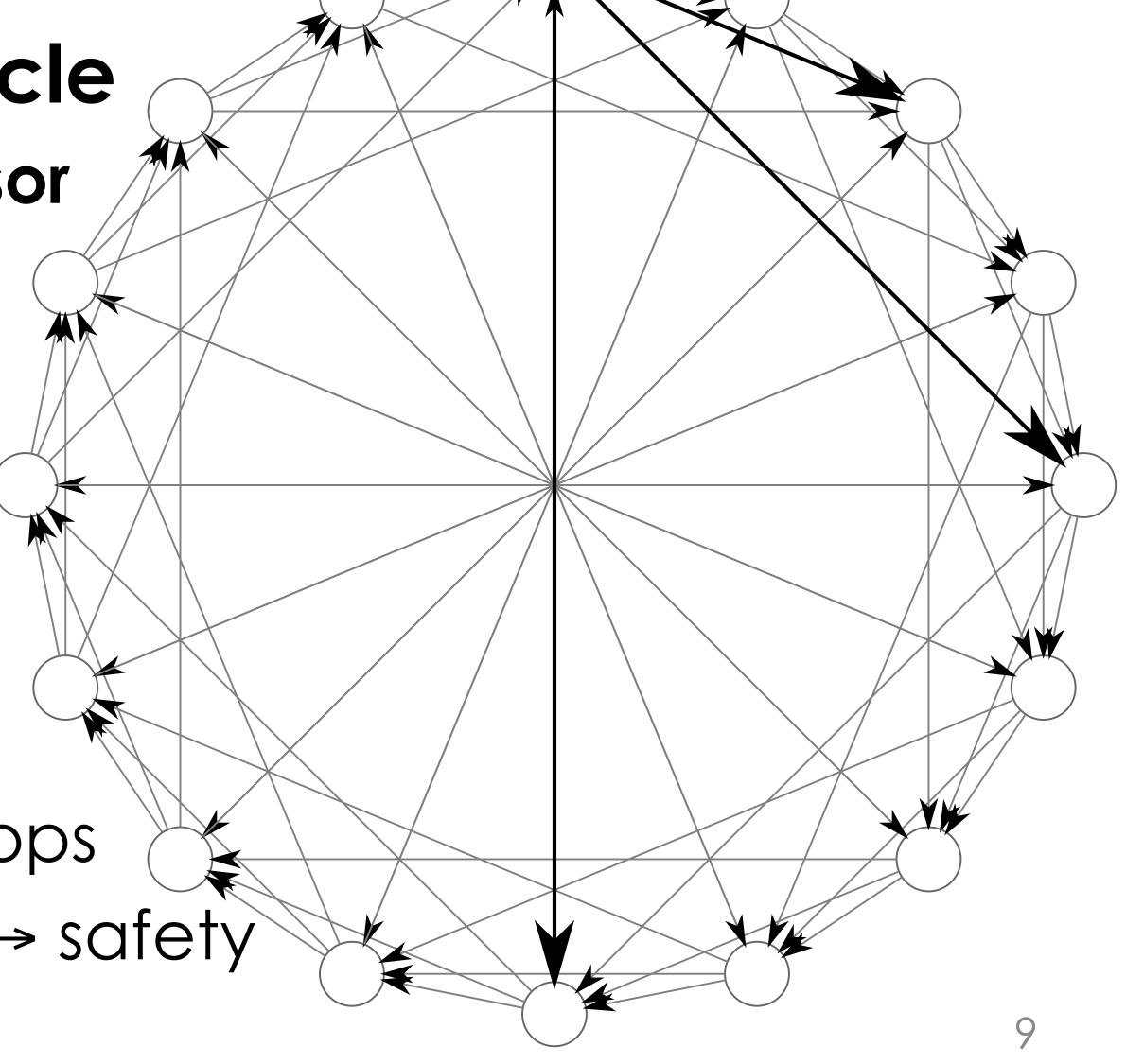
- No central server: clients do message routing
 - (But uses the Internet, thus depends on IP, etc.)
- To join network: new client connects to seed nodes
 - Can then grow local knowledge of global client set
- Example peer-to-peer structure: distributed hash table
 - Hash data items; use hash as position within number space
 - Assign clients responsibility for ranges of that number space
 - Reliable even as clients join and leave (churn) over time

'Chord' distributed hash table (DHT)

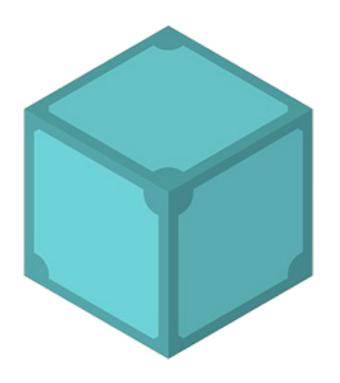
• Clients + keys arranged in circle

• Every client knows their successor

 Client also has 'fingers' further ahead in key space


 Note the four emphasised fingers of top-centre client

 Look up key by finding client that precedes that key


• Can reach any key in $O(\log n)$ hops

Assign multiple clients per key → safety

IPFS—the InterPlanetary File System

- Provides decentralised data storage
 - Aims for high availability (anti-censorship, global replication)
 - Decentralisation avoids reliance on 'big tech', or single servers
- Location of data (and replicas) based on its content
 - Request data via a cryptographic hash of that data
 - Data is divided up into immutable blocks
 - Interplanetary Naming System (IPNS) supports mutable objects
 - Peer-to-peer infrastructure for finding / reading / writing data

Blockchain aside from bitcoin

- Increasingly blockchain services are being offered independently of cryptocurrencies such as bitcoin
 - Blockchain as a Service is offered on the commercial cloud
- There is much hype, and often gaps in understanding
 - Some existing approaches rebadged as 'blockchain'
- bitcoin helped show ways in which decentralised systems can appear to form distributed consensus

Different sorts of blockchain designs

- Permissionless (open) systems—bitcoin, Etherium, etc.
 - Any node can join or leave the blockchain at any time
- Permissioned—there is control over who participates
 - Can use algorithms like Paxos or RAFT to form consensus
 - ... similar sorts of closed systems existed previously
- Other axis is public / private
 - sovrin is a permissioned+public blockchain managing identity
 - hyperledger is a permissioned, private blockchain

Open, decentralised consensus algorithms

- Permissionless blockchains: consensus over open set
 - Nakamoto consensus is term for bitcoin's consensus algorithm
 - As discussed, bitcoin uses proof-of-work to support consensus
 - Nifty ... but for the hugely destructive environmental effect
 - Nakamoto consensus also involves the 'longest chain' rule

- Ethereum now uses proof-of-stake (explained soon)
 - Was bootstrapped from previously using proof-of-work

Proof of space

- As the name suggests: demonstrate allocating space
 - ... as opposed to demonstrating doing computational work
- One approach: graph pebbling
 - prover stores large graph to demonstrate commitment
 - verification needs to be cheap compared to proof generation

Criticism: messed up supply chain for storage devices!

Proof of stake

- Validators are selected based on their stake
 - i.e., selected validators will hold lots of the cryptocurrency
 - Likely required to hold this for some minimum duration
 - it's against their own financial interests to behave maliciously
- Various potential attacks:
 - Nothing-at-stake—malicious validator builds on every fork
 - Improved approaches require security deposits from validators
 - Long-range attacks—attackers recreate alternate history
 - Mitigations involve, e.g., checkpoints; invalidating old keys
 - Overcentralisation—incentive to raise stake → centralisation

Web3 and decentralised applications

- Web3 aim: build decentralised computing platforms
 - Tone is sometimes even stronger, i.e., anti-central

- Executable contracts rather than transfer of currency
 - bitcoin already shows practicality of scripting language
 - bitcoin facilitates agreement of future events (& cancelation)

• Always ask: is blockchain really needed? Alternatives?

Proposed Web3 example applications

- Supply chain management: tracked asset transfer
 - Particular with respect to pharmaceuticals
 - Many organisations; common goal; fraud impractical
- Microgrids and neighbourhood electricity trading
- Government storage of records (e.g., health records)
 - e-democracy and voting (how could that go wrong?)
- Collecting royalties for performances...
- Legal and financial processes, e.g., conveyancing

Web3/crypto: does it avoid central control?

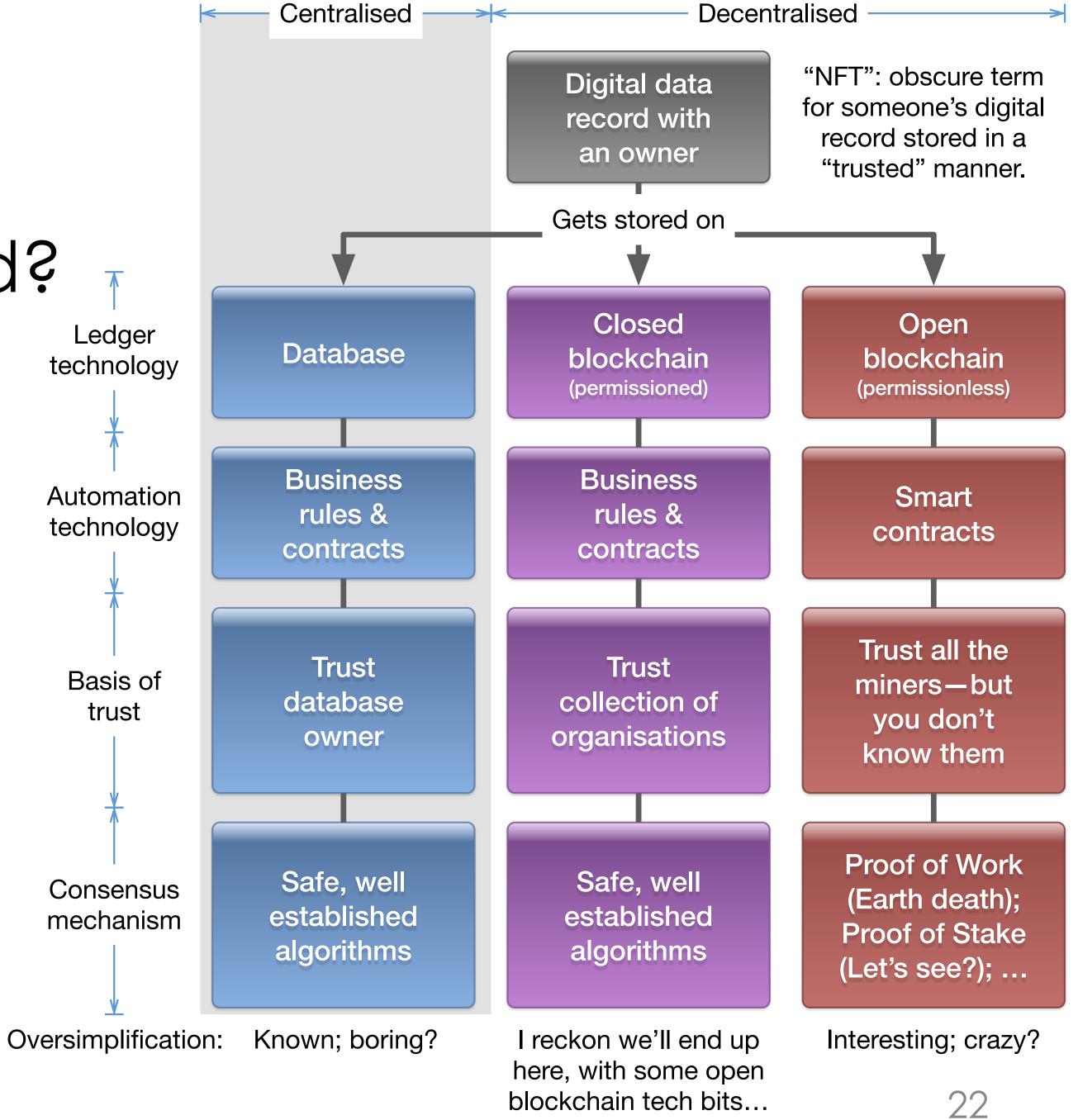
- Web3/crypto doesn't depend on big-tech or big banks
- ... but there are many dependencies often ignored:
 - Need access to computing equipment i.e., supply chain
 - Need to have power infrastructure (solar bitcoin mining: hard)
 - Need Internet service provider (ISP) and network infrastructure
 - Crypto needs an exchange to gain any real-world cash value
 - Exchanges almost certainly attract government regulation
- More pragmatic/efficient to embrace central control?

Ethereum aims to effect dapps (distributed)

- Ethereum aims to build a global computing platform
 - Cannot be shut down easily
 - Can scale up and down
 - Resistant to censorship and other interference
- Ethereum Virtual Machine
 - Platform on which code executes

Usually need some sort of bridge to other web APIs

Blockchain scheme governance


- What if a protocol vulnerability is discovered?
 - Say a hacker steals resources worth millions of dollars
 - Entire blockchain system can agree to rewind history?
 - ... but this is a capability blockchain systems seek to give up
 - Alternatively end up showing lack of real decentralisation?
- Ethereum e.g.: Decentralized Autonomous Organization
 - Raised \$150m crowd-sourced funding; DAO was ~15% of ether
 - Code had vulnerabilities; hacker siphoned off a third of DAO
 - Soft-fork and hard-fork resolutions discussed; hard-fork done

NFTs—non-fungible tokens

- Cash is fungible—individual coins are interchangeable
- NFTs are just unique digital records owned by someone
- NFTs are usually stored on blockchains
 - Thus record of ownership is decentralised and cooperative
- Smart contracts can record NFT transfer of ownership
- Blockchains don't suit storing lots of data
 - Thus NFTs often encode a URI to target object
 - ... but then there is no particular value to NFT's uniqueness

NFT characterisation

- Blockchain NFTs: real need?
 - Existing financial systems
 can be improved to lower
 friction of transactions (IMO)
- Decentralised Identifiers:
 - W3C DID standard
 - Help unify different technology that achieves similar results

In summary

- Bitcoin demonstrated decentralised consensus in an open world: including permissionless blockchains
- Web3 aim: build decentralised apps (dapps) & storage
 - Depends on peer-to-peer functionality at low levels
 - Embraces many forms of blockchain, e.g., Ethereum
 - Goes beyond cryptocurrency use
- NFTs are a particular use of blockchains
 - ... mostly using open blockchains, but might not need to