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Learning objectives

• Consider reliability as a key part of computer security


• Encourage you to always design for failure


• Appreciate how decentralised consensus helps 
security aspects such as reliability & non-repudiation


• Gain an initial view of blockchain approaches and 
how they support bitcoin, and other emerging 
decentralised autonomous systems
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Securing valid results on fallible machines

• Digital devices suffer (non-malicious) failures

• RAM corruption errors—c.f., ECC memory

• Storage media may fade or malfunction

• Beware cheap writable optical media or flash storage

• SSD devices fail very differently from magnetic hard drives…


• Also may have vulnerability to critical software failures:

• filesystem bugs

• compression library bugs

• system use contrary to supported operation
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One solution: rerun your computations

• If you can estimate probability of random failures, you 
can determine how many repeats of a computation 
achieve a given level of confidence in the result

• Excessive system failures may become overshadowed by 

other concerns anyway…


• Multiple trials need not be run one after another:

• can structure repeatability within a software service

• cloud computing provides convenient elasticity for parallelism
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FYI: machines designed to fail frequently

• Computers have adjustable reliability

• Can trade off against speed, power consumption, etc.

• Consider the practice of overclocking CPUs:

• may need to apply CPU voltage adjustments;

• may affect reliability of computation—possibly catastrophically!


• Computer participates in a group repeating results?

• Can purposefully design such a computer to be less reliable

• May end up with a net saving in this resource trade-off...
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Distributed consensus—trustworthy results

• Common in more than just storage systems, e.g.:

• Primary/primary relational database server replication

• NoSQL: e.g., use of gossip protocols and eventual consistency

• Network infrastructure such as routers with hot spares


• Systems now exist that just handle consensus gathering

• e.g., Apache ZooKeeper, etcd offer distributed synchronisation

• Apache ZooKeeper used in other systems: Hadoop, HBase, …

• etcd used as main configuration database in Kubernetes
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Apache ZooKeeper & etcd

• Essentially multi-server, key-value database systems

• However, emphasis is on correctness and synchronisation

• Multiple separate physical computers are required: withstand faults


• ZooKeeper introduced to Hadoop to address complex failures: 
coordinates & manages scheduling of map-reduce tasks

• etcd, e.g., facilitates updating clusters without breaking them


• Key property: facilitates atomic broadcast

• Under atomic broadcast all correct processes in a distributed 

system receive the same sequence of events, or all abort
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Distributed consensus algorithms

• Fischer-Lynch-Paterson impossibility result (1985):

• Consistency protocols pick 2 of: safety, liveness, fault tolerance


• Paxos: fault tolerant consensus over distributed nodes

• Used widely, including within Apache ZooKeeper


• Raft: alternative to Paxos, used by etcd

• Raft algorithm easier to understand and implement than Paxos

• Sub-problem 1: leader election

• Sub-problem 2: log (i.e., data) replication by leader to followers


• EPaxos: more complex and efficient than Paxos
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Add in potentially malicious parties

• ZooKeeper, etcd are used when we trust all servers: 
e.g., they are owned by one organisation


•When malicious parties may be participating, the 
consensus set size must grow

• Need a majority of votes from the assumed-benign server set


• Could we choose not to control the server set?

• Enter permissionless blockchains, e.g., bitcoin

• Safety presumed if 50% of nodes are benign (isn’t quite right!)
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Different types of fault tolerance

• Crash fault tolerance (CFT) for system of  nodes

• Crash faults:  nodes appear to crash (i.e., vanish)

• A majority of non-failed nodes need to agree state:  


• Byzantine fault tolerance (BFT) for system of  nodes

• Byzantine faults include  nodes acting maliciously

• Malicious node may be actively trying to break a given protocol


• Majority of non-malicious nodes need to agree: 


• Raft & Paxos are only CFT; variants of Paxos are BFT

N
c

N ≥ 2c + 1

N
m

N ≥ 3m + 1
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Warm up exercise: build a cryptocurrency

• How do we make a cryptocurrency ‘coin’?


• How do we identify coin owners?


• How can we protect the system from forgery?


• How do we record ownership and transfer of 
ownership?


• Can copy digital assets perfectly, so how can coins be 
single-use?

11COSC312 / COSC412 Lecture 8, 2024



Distributed consensus needs within bitcoin

• To work, currencies need to track who has what

• Normal currency uses TTPs such as mint, banks, etc.


• bitcoin has all validating nodes store the whole ledger

• Distributed ledger is sequence of blocks of transactions

• Collectively agreeing transaction order avoids double-spending


• A wallet is a hash of a public key a client generates

• Own private key? Can prove your connection to transactions

• … don’t actually need a representation of ₿ apart from ledger
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Proof of work—validate ₿ transactions

• Must protect validation from Sybil attacks, so:

• Make it computationally costly to incorporate new transactions

• move to how much computing power you control, not just the 

number of identities that you control (i.e., the basis of Sybil attacks)


• Make it rewarding to incorporate new transactions—more later


• Validator collects transactions into a block

• checks transactions internally first—could be double spending

• forms Merkle tree over transaction hashes (see later slides…)

• to close off the block, it applies proof of work algorithm
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bitcoin transaction validation

• Proof of work must be easy to check; hard to compute

• In some ways like a hard-to-apply digital signature


• bitcoin: must find a nonce that when appended to the 
block of transactions+ gives a hash value less than target

• SHA-256 hash function used, specifically

• Target is dynamic: ensures blocks take ~10 minutes to compute, 

regardless of changes in net computational resources available


• September 2024: bitcoin blockchain is about 592.72 GB
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Blockchain approaches predate bitcoin

• Blockchain because new block includes hash of 
previous block

• Thus records’ integrity checks are linked together sequentially


• Linked hashes widely used before bitcoin (2008), e.g.:

• Git (2005) chains hashes to preserve integrity of whole history

• (Git’s rebase operation can be disruptive: hashes get changed)


• Solaris ZFS (2006): trees of hashes confirm integrity of stored files

• Let’s explore Merkle trees in more detail…
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Merkle tree: efficient integrity checking

• Consider a set of data blocks , then:

• A hash value is computed for each data block  


• A tree is built, with parent hash hashing hashes of its children

• The root hash will thus summarise all the data blocks


• Checking hash on particular  can be done cheaply

• Get trusted root hash; other hashes can come from anywhere

• Used within Bittorrent to check blocks retrieved build valid file

• Also with ZFS, within bitcoin transaction blocks, etc.

Di
Di

Di

16COSC312 / COSC412 Lecture 8, 2024



Merkle tree depiction

• Leaf data blocks 
may be any size


• All upper blocks 
Hxx are fixed size


• Need trusted Htop 

• After that, Hxx from untrusted sources OK: still integrity-checked


• Secure implementation needs a few more details

• e.g., Hxx blocks must not be able to be passed off as leaf data
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Leaf 1 data Leaf 2 data Leaf 3 data Leaf 4 data

H11=
hash(Leaf 4 data)

H10=
hash(Leaf 3 data)

H01=
hash(Leaf 2 data)

H00=
hash(Leaf 1 data)

H0=
hash(H00 | H01)

H1=
hash(H10 | H11)

Htop=
hash(H0 | H1)



Validators, mining, fees and the network

• Bitcoin miners are carrying out validation of blocks


• Two incentives for miners to solve block hash task:

• reward of 3.125 bitcoin since early 2024; around NZ$87,245 (ish)

• value halves periodically; was 50₿ in 2009!


• by 2140 CE no further bitcoin increase


• ability to levy fees—commercial competition applies


• Broadcast communication between miners uses a 
peer-to-peer protocol

• avoids central infrastructure… and knowing the miner set (!)
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Results from block validation

• Rate is ~10 minutes, but this is probabilistic

• e.g., might guess an appropriate nonce first off (if really lucky)


• Automatically helps serialisation: variance in mining 
time is larger than the message broadcast time

• Miners want to publish results ASAP so to receive payment

• (Some potential attacks do involve holding back a solution.)


• Still possible for multiple answers to be broadcast, so…
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Blockchain forks need to be resolved

•When nodes hear multiple solutions they keep them all


• Subsequent mining is only done on your longest fork

• Extremely unlikely that parallel forks will continue for long

• Software bugs can cause long-lived forks—have happened!

• Probability distribution likely to clearly favour one branch


• Attacker with significant resources can try to keep fork 
alive, but cost, coordination and probability won’t help

• (Some attacks involve late revealing of privately mined forks.)
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How/when is a transaction approved?

• Clearly the transaction has to be recorded in a block


• Two simple rules are applied:

• Relevant block must be in the longest fork of blockchain

• Five or more blocks must already follow it in the blockchain


• This causes a transaction clearing delay (in effect)

• Consider possible attacks, e.g., partitioning of network

• Probably impractically difficult to effect
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Conclusion

• Failures can threaten security by affecting availability

• Hardware and software problems


• Efficient means exist to reach decentralised consensus:

• Merkle trees for checking integrity

• Apache ZooKeeper, and etcd, within a known set

• Proof-of-work within permissionless blockchain such as bitcoin


• Discussed at high level blockchain & how bitcoin works
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