
Reliability, distributed
consensus & bitcoin

COSC312 / COSC412

Learning objectives

• Consider reliability as a key part of computer security

• Encourage you to always design for failure

• Appreciate how decentralised consensus helps
security aspects such as reliability & non-repudiation

• Gain an initial view of blockchain approaches and
how they support bitcoin, and other emerging
decentralised autonomous systems

2COSC312 / COSC412 Lecture 8, 2024

Securing valid results on fallible machines

• Digital devices suffer (non-malicious) failures

• RAM corruption errors—c.f., ECC memory

• Storage media may fade or malfunction

• Beware cheap writable optical media or flash storage

• SSD devices fail very differently from magnetic hard drives…

• Also may have vulnerability to critical software failures:

• filesystem bugs

• compression library bugs

• system use contrary to supported operation

3COSC312 / COSC412 Lecture 8, 2024

One solution: rerun your computations

• If you can estimate probability of random failures, you
can determine how many repeats of a computation
achieve a given level of confidence in the result

• Excessive system failures may become overshadowed by

other concerns anyway…

• Multiple trials need not be run one after another:

• can structure repeatability within a software service

• cloud computing provides convenient elasticity for parallelism

4COSC312 / COSC412 Lecture 8, 2024

FYI: machines designed to fail frequently

• Computers have adjustable reliability

• Can trade off against speed, power consumption, etc.

• Consider the practice of overclocking CPUs:

• may need to apply CPU voltage adjustments;

• may affect reliability of computation—possibly catastrophically!

• Computer participates in a group repeating results?

• Can purposefully design such a computer to be less reliable

• May end up with a net saving in this resource trade-off...

5COSC312 / COSC412 Lecture 8, 2024

Distributed consensus—trustworthy results

• Common in more than just storage systems, e.g.:

• Primary/primary relational database server replication

• NoSQL: e.g., use of gossip protocols and eventual consistency

• Network infrastructure such as routers with hot spares

• Systems now exist that just handle consensus gathering

• e.g., Apache ZooKeeper, etcd offer distributed synchronisation

• Apache ZooKeeper used in other systems: Hadoop, HBase, …

• etcd used as main configuration database in Kubernetes

6COSC312 / COSC412 Lecture 8, 2024

Apache ZooKeeper & etcd

• Essentially multi-server, key-value database systems

• However, emphasis is on correctness and synchronisation

• Multiple separate physical computers are required: withstand faults

• ZooKeeper introduced to Hadoop to address complex failures:
coordinates & manages scheduling of map-reduce tasks

• etcd, e.g., facilitates updating clusters without breaking them

• Key property: facilitates atomic broadcast

• Under atomic broadcast all correct processes in a distributed

system receive the same sequence of events, or all abort
7COSC312 / COSC412 Lecture 8, 2024

Distributed consensus algorithms

• Fischer-Lynch-Paterson impossibility result (1985):

• Consistency protocols pick 2 of: safety, liveness, fault tolerance

• Paxos: fault tolerant consensus over distributed nodes

• Used widely, including within Apache ZooKeeper

• Raft: alternative to Paxos, used by etcd

• Raft algorithm easier to understand and implement than Paxos

• Sub-problem 1: leader election

• Sub-problem 2: log (i.e., data) replication by leader to followers

• EPaxos: more complex and efficient than Paxos

8COSC312 / COSC412 Lecture 8, 2024

Add in potentially malicious parties

• ZooKeeper, etcd are used when we trust all servers:
e.g., they are owned by one organisation

•When malicious parties may be participating, the
consensus set size must grow

• Need a majority of votes from the assumed-benign server set

• Could we choose not to control the server set?

• Enter permissionless blockchains, e.g., bitcoin

• Safety presumed if 50% of nodes are benign (isn’t quite right!)

9COSC312 / COSC412 Lecture 8, 2024

Different types of fault tolerance

• Crash fault tolerance (CFT) for system of nodes

• Crash faults: nodes appear to crash (i.e., vanish)

• A majority of non-failed nodes need to agree state:

• Byzantine fault tolerance (BFT) for system of nodes

• Byzantine faults include nodes acting maliciously

• Malicious node may be actively trying to break a given protocol

• Majority of non-malicious nodes need to agree:

• Raft & Paxos are only CFT; variants of Paxos are BFT

N
c

N ≥ 2c + 1

N
m

N ≥ 3m + 1

10COSC312 / COSC412 Lecture 8, 2024

Warm up exercise: build a cryptocurrency

• How do we make a cryptocurrency ‘coin’?

• How do we identify coin owners?

• How can we protect the system from forgery?

• How do we record ownership and transfer of
ownership?

• Can copy digital assets perfectly, so how can coins be
single-use?

11COSC312 / COSC412 Lecture 8, 2024

Distributed consensus needs within bitcoin

• To work, currencies need to track who has what

• Normal currency uses TTPs such as mint, banks, etc.

• bitcoin has all validating nodes store the whole ledger

• Distributed ledger is sequence of blocks of transactions

• Collectively agreeing transaction order avoids double-spending

• A wallet is a hash of a public key a client generates

• Own private key? Can prove your connection to transactions

• … don’t actually need a representation of ₿ apart from ledger

12COSC312 / COSC412 Lecture 8, 2024

Proof of work—validate ₿ transactions

• Must protect validation from Sybil attacks, so:

• Make it computationally costly to incorporate new transactions

• move to how much computing power you control, not just the

number of identities that you control (i.e., the basis of Sybil attacks)

• Make it rewarding to incorporate new transactions—more later

• Validator collects transactions into a block

• checks transactions internally first—could be double spending

• forms Merkle tree over transaction hashes (see later slides…)

• to close off the block, it applies proof of work algorithm

13COSC312 / COSC412 Lecture 8, 2024

bitcoin transaction validation

• Proof of work must be easy to check; hard to compute

• In some ways like a hard-to-apply digital signature

• bitcoin: must find a nonce that when appended to the
block of transactions+ gives a hash value less than target

• SHA-256 hash function used, specifically

• Target is dynamic: ensures blocks take ~10 minutes to compute,

regardless of changes in net computational resources available

• September 2024: bitcoin blockchain is about 592.72 GB

14COSC312 / COSC412 Lecture 8, 2024 + and other things we are not talking about

Blockchain approaches predate bitcoin

• Blockchain because new block includes hash of
previous block

• Thus records’ integrity checks are linked together sequentially

• Linked hashes widely used before bitcoin (2008), e.g.:

• Git (2005) chains hashes to preserve integrity of whole history

• (Git’s rebase operation can be disruptive: hashes get changed)

• Solaris ZFS (2006): trees of hashes confirm integrity of stored files

• Let’s explore Merkle trees in more detail…

15COSC312 / COSC412 Lecture 8, 2024

Merkle tree: efficient integrity checking

• Consider a set of data blocks , then:

• A hash value is computed for each data block

• A tree is built, with parent hash hashing hashes of its children

• The root hash will thus summarise all the data blocks

• Checking hash on particular can be done cheaply

• Get trusted root hash; other hashes can come from anywhere

• Used within Bittorrent to check blocks retrieved build valid file

• Also with ZFS, within bitcoin transaction blocks, etc.

Di
Di

Di

16COSC312 / COSC412 Lecture 8, 2024

Merkle tree depiction

• Leaf data blocks
may be any size

• All upper blocks
Hxx are fixed size

• Need trusted Htop

• After that, Hxx from untrusted sources OK: still integrity-checked

• Secure implementation needs a few more details

• e.g., Hxx blocks must not be able to be passed off as leaf data

17COSC312 / COSC412 Lecture 8, 2024

Leaf 1 data Leaf 2 data Leaf 3 data Leaf 4 data

H11=
hash(Leaf 4 data)

H10=
hash(Leaf 3 data)

H01=
hash(Leaf 2 data)

H00=
hash(Leaf 1 data)

H0=
hash(H00 | H01)

H1=
hash(H10 | H11)

Htop=
hash(H0 | H1)

Validators, mining, fees and the network

• Bitcoin miners are carrying out validation of blocks

• Two incentives for miners to solve block hash task:

• reward of 3.125 bitcoin since early 2024; around NZ$87,245 (ish)

• value halves periodically; was 50₿ in 2009!

• by 2140 CE no further bitcoin increase

• ability to levy fees—commercial competition applies

• Broadcast communication between miners uses a
peer-to-peer protocol

• avoids central infrastructure… and knowing the miner set (!)

18COSC312 / COSC412 Lecture 8, 2024

Results from block validation

• Rate is ~10 minutes, but this is probabilistic

• e.g., might guess an appropriate nonce first off (if really lucky)

• Automatically helps serialisation: variance in mining
time is larger than the message broadcast time

• Miners want to publish results ASAP so to receive payment

• (Some potential attacks do involve holding back a solution.)

• Still possible for multiple answers to be broadcast, so…

19COSC312 / COSC412 Lecture 8, 2024

Blockchain forks need to be resolved

•When nodes hear multiple solutions they keep them all

• Subsequent mining is only done on your longest fork

• Extremely unlikely that parallel forks will continue for long

• Software bugs can cause long-lived forks—have happened!

• Probability distribution likely to clearly favour one branch

• Attacker with significant resources can try to keep fork
alive, but cost, coordination and probability won’t help

• (Some attacks involve late revealing of privately mined forks.)

20COSC312 / COSC412 Lecture 8, 2024

How/when is a transaction approved?

• Clearly the transaction has to be recorded in a block

• Two simple rules are applied:

• Relevant block must be in the longest fork of blockchain

• Five or more blocks must already follow it in the blockchain

• This causes a transaction clearing delay (in effect)

• Consider possible attacks, e.g., partitioning of network

• Probably impractically difficult to effect

21COSC312 / COSC412 Lecture 8, 2024

Conclusion

• Failures can threaten security by affecting availability

• Hardware and software problems

• Efficient means exist to reach decentralised consensus:

• Merkle trees for checking integrity

• Apache ZooKeeper, and etcd, within a known set

• Proof-of-work within permissionless blockchain such as bitcoin

• Discussed at high level blockchain & how bitcoin works

22COSC312 / COSC412 Lecture 8, 2024

