

COSC312 / COSC412

COSC312 / COSC412 paper overview

- Overall aim of the paper
 - Explore the modern theoretical bases of cryptography—a central aspect of contemporary computing
 - Investigate security technology in practice
- Since 2014 focus on crypto. & security over complexity
 - Obviously exam papers pre-2014 thus cover different topics)
- In 2023 we introduced COSC312—welcome!

Lecturers

- Michael Albert
 - Main focus: theory fundamentals; quantum cryptography

- David Eyers
 - Main focus: cryptography in practice; security topics

Teaching times: COSC312 / COSC412

- Two-hour lecture per week COSC312 & COSC412
 - COSC412 students otherwise carry out self-directed study
- Additional teaching schedule for COSC312:
 - On-demand one-hour tutorial per week
 - Tutorials start in week one, but no specific work is set
 - Two-hour lab slot per week
 - Labs start in week two
- No assessment linked to labs or tutorials

Assessment

- COSC312 Two assignments (40% total)
 - A1, worth 20%, due 21st August—start of week 7
 - A2, worth 20%, due 25th Sept.—start of week 11
- COSC412 Three assignments (40% total)
 - A1 and A2 as above, but both worth 10%
 - A3: Poster and presentation (20% total)
 - PDF will be due 7th October—end of week 12;
 - Presentations will be in week 13 (i.e., the last week of term)
- Exam: Worth 60%, date TBC

Textbook? Resources?

- We are not setting a particular textbook for the course
 - We expect to provide online references
- The COSC412 and COSC312 website resources and lecture notes sections will link to relevant material:
 - https://cosc312.cspages.otago.ac.nz/
 - https://cosc412.cspages.otago.ac.nz/
- We'll present more than the examinable material
 - In exam: only what we've been able to discuss

More on posters and presentations (A3)

- COSC412: you will select a security issue of interest that you can research in groups
- Groups must write & design their poster collaboratively
 - They will be submitted before the presentations
 - Academic posters contain a lot of content—examples later
- Presentations from groups must involve all members of the group: during the introduction and/or poster tour

Potential outline of material

- Cryptography in practice and security (DE)
 - L1: Introduction and administration
- Cryptography theory (MA)
 - L2: Fundamentals of classical cryptosystems;
 stream ciphers & key agreement
 - L3: Asymmetric cryptography
- More cryptography in practice (DE)
 - L4: Kerberos and Microsoft Active Directory
 - L5: Block ciphers, HTTPS, TLS/SSL and certificates
 - L6: Decentralised authorisation and OAuth 2.0
 - L7: Reliability, distributed consensus and bitcoin

Potential outline of material (cont.)

- Mid-semester break is between L7 and L8
- L8: Blockchain and cryptocurrencies (DE)
- L9: Quantum computation and cryptography (MA)
- More cryptography in practice (DE)
 - L10: Homomorphic Encryption
 - L11: Reliability, distributed consensus and blockchain
 - L12: Quantum computation
- L13: Poster presentations (you)

Learning objectives of lecture one

- Understand computer security fundamentals
- Be able to explain cryptography's role in security
 - For the 'in practice' parts of the course, we usually employ cryptography as a black box tool
- Appreciate alternatives to cryptography
 - Describe the limits of cryptography as a tool
 - Explain threats cryptography cannot protect against

What is cryptography?

- A dictionary definition:
 - cryptography | krip'tägrəfē | noun
 - "the art of writing or solving codes."

- You should aim to be able to define the term more specifically to computing than this!
 - The theory part of this course will help...

What is computer security?

- Physical security: protect console / computer
 - Computer can be stolen? Encrypt disks
- Software security: authenticity, correctness
 - e.g., code signing; verifying software behaviour
- Information security has three main pillars:
 - Confidentiality; Integrity; Availability
- Network security: untrustworthy regions

Why is cryptography useful for security?

- An untrusted channel can be used by intercommunicating trusted principals
 - This is a correctness property...
- ... but what about liveness of communications?
 - Malicious reading, or reading and writing?
- Attackers don't need full control to break networks
 - e.g., DDoS (Distributed Denial of Service)

Key principle: shared secret

- Trusted interactions need pre-shared data
 - Diffie-Hellman key-exchange establishes a shared secret but does not authenticate—beware man in the middle (MITM) risks
- Look for where shared secrets fit in any given system
 - May not be immediately obvious

- Contrast the shared secret encoding in:
 - HTTPS, SSH, PGP

Some security doesn't need cryptography

Physical security

- Air gap isolation; walk-in access to data centres
- Restricting peripheral access (how?)

Network security

- Separate physical network cabling
- Separate virtual networks (e.g., VLANs)
- What about software security?
 - Compile software from source... but is this enough?

When is cryptography use inappropriate?

- Performance used to be an argument—less so, now
- Storage of life-long sensitive data?
 - While attackers might not be able to read the data today, you are still giving them your data in some form!
 - For how long will a given cypher be secure?
 - What application domains have this concern?
- Managing keys may be challenging

Cryptography ageing (... badly)

- Strength diminished
 - DES

- Bug in cryptography
 - MD5—hash collisions can be constructed:
 - http://s3.amazonaws.com/dmk/md5 someday.pdf
- Bug in protocol
 - OAuth; Kerberos 4; NTLM; ...

New hardware, new threats to crypto.

- Hardware performance increases allow for brute-force attacks that were not previously possible
 - End of Moore's Law: have to go parallel
 - ... but many attacks parallelise easily
 - Multicore CPUs, GPUs, FPGAs, Xeon Phi, many available via large botnets

- Indexing techniques: attackers have more storage too
 - Practical to compute large datasets for attacks

Pillars of information security

- Recall the three main pillars of information security:
 - Confidentiality, Integrity, Availability—CIA (!)
 - We will look at where cryptography fits within each

- Other classifications exist, such as the IAS Octave:
 - Adds: privacy, authenticity & trustworthiness, non-repudiation, accountability and auditability
 - CIA principles can help inform these extra ones

Crypto in info. sec.: confidentiality

- Confidentiality (AKA secrecy) is probably the most widely appreciated cryptography use
 - Hiding of information
 - Controlling a set of people that have access
- Cryptography supports confidentiality when key distribution is controlled
 - Asymmetric cryptography: easier key distribution control
 - (Alternatively just don't give out the data!)

Crypto in info. sec.: integrity

- Checksums can check for changes in data
- Go further to create Message Authentication Codes (MACs) that include principal's identifying information
 - Usually use symmetric cryptography

- Digital signatures go further than MACs
 - Use asymmetric cryptography
 - Include necessary means for nonrepudiation

Crypto in info. sec.: availability

- Can cryptography help secure availability?
 - Not directly...

- Resources are used when rebuffing attacks
 - Therefore attacks can affect availability cheaply
- Cryptography can help indirectly
 - Validate authenticity of network link usage
 - Effect distributed rate control of malicious use

Cryptography in code executables

- Signing of 'data' that is actually executable code
 - e.g., Java Archives (JARs), and
 - macOS and Windows executables

- Linux package repositories include signatures
 - Often of packages rather than the EXEs contained (Debian)
- ... also sometimes from the bad guys (how?)

Building effective, secure systems

- Ross Anderson (University of Cambridge) has pioneered the field of Security Engineering
 - Cryptography? Yes, but also:
 - Social science; psychology; economics; etc.
 - Whole-system view—you can't retrofit good security

- Key point: most security systems involve users
 - (Terrible idea: they tend to mess everything up!)
 - The weakest link usually won't be the cryptography...

Too much trust in cryptography?

- ... But it can be the cryptography or usage protocol
 - e.g., on https://www.lightbluetouchpaper.org search for "Chip and PIN"

- Ross Anderson's group's bank disagreements
 - Highlight risks of banks blaming consumers:
 - Often assume their technology is near-perfect

In any case: best plan security failures too

Social engineering attacks

- Why would hackers try to break cryptography when they can access services through users?
 - Phishing attacks are highly profitable
- We wouldn't expect to be 'phished'
 - ... but we tend to see so-called 'driftnet' attacks
 - Driftnet attacks are easy to launch, and have low yield
 - Targeted social engineering attacks are a different story:
 careful research is undertaken by the attacker

Authentication and Authorisation

Return to how users participate in security

- Authentication involves proving identity
 - Generally this should not need to change much
- Authorisation checks follow authentication
 - Privileges of user on target system are checked
 - Much more likely to change frequently

... AAA—add Accounting too

- Systems such as RADIUS provide for AAA
 - (Remote Authentication Dial In User Service)
 - RADIUS is often behind corporate Wi-Fi APs

 In addition to managing user identity, and user privileges, RADIUS also manages usage tracking

How does cryptography link to accounting?

Revocation

- Justifies authorisation / authentication split:
 - May need to remove the privileges of a user,
 - but you can't "remove" their identity
- How quickly does revocation take effect?
- Revocation and digitally-signed assertions:
 - Can systems revoke digitally signed statements?
 - e.g., HTTPS CRLs—more on these later

Delegation

- Delegation is a desirable security facility
 - Temporarily give another user privileges
 - Needs a clear revocation protocol
 - ... or an understanding that revocation is impractical
- Most use-cases only transfer some privileges
 - Aim is not for the delegator to be entirely impersonated by the target of delegation!
 - ... so we need rich user privilege representation, which leads onto access control

Access Control

• ... is an enforcement mechanism of some policy

- Typically code-based enforcement, but this risks:
 - Missing access control checks
 - Time of check to time of use (TOCTOU) errors
- Can code access control directly into software, but...
 - Ideally make policy entirely code independent
 - Can use libraries such as XACML

Access Control Matrix

 Fundamental representation of users, objects and privileges within a secured system

	/dev/random	Directory 'logs'	File 'report.pdf'
User Jim	read	read, write, execute, own	
User Ned	read	read, execute	read,write,own

- Collect columns? Get Access Control Lists (ACLs)
- Collect rows? Get 'capabilities'
- ... but this representation is of static security

Discretionary Access Control—DAC

DAC is the most common form of access control

• Users are free to modify access privileges over objects that they own—think Unix / NTFS filesystem permissions

No system-wide security policy

Mandatory Access Control—MAC

- Common in military / intelligence services
- Data-linked security: system-wide policy
 - Often based on labels
 - Users have labels; processes inherit labels
 - Data items also have labels
- User/data label policy is enforced, e.g.:
 - No write-down—you can't declassify information
 - No read-up—you can't read more sensitive data

Role-based Access Control—RBAC

 Introduce roles as an abstraction between users and privileges

- Like user groups, but more expressive
 - Roles have to be activated within a session
 - Role activation usually under control of the user
 - e.g., RBAC avoids Solaris needing all-powerful 'root' user
- We'll see an RBAC / crypto link much later

Summary

- Introduced cryptography and security
 - Cryptography is not always needed for security
 - Placed crypto in the context of access control
 - Skimmed over use of crypto in typical software systems and network protocols
- Security Engineering: a whole-system view
 - Consider all of the interacting participants
 - Plan for security failures—everyone makes mistakes!