Paper overview and an introduction to security

COSC312 / COSC412

COSC312 / COSC412 paper overview

- Overall aim of the paper
 - central aspect of contemporary computing
 - Explore the modern theoretical bases of cryptography—a Investigate security technology in practice
- Since 2014 focus on crypto. & security over complexity Obviously exam papers pre-2014 thus cover different topics)
- In 2023 we introduced COSC312—welcome!

2

Lecturer

David Eyers

(In the past Prof. Michael Albert was co-teacher)

COSC312/COSC412 Lecture 1, 2025

Primary expertise: cryptography in practice; security topics

 Expert in quantum cryptography, theory topics (+much more) Is emeritus professor in SoC and frequently is in his office...

Teaching times: COSC312 / COSC412

- Two-hour lecture per week COSC312 & COSC412 COSC412 students otherwise carry out self-directed study
- Additional teaching schedule for COSC312: On-demand one-hour tutorial per week Tutorials start in week one, but no specific work is set
- - **Two-hour lab** slot per week
 - Labs start in week two
- No assessment linked to labs or tutorials

Assessment

COSC312 Two assignments (40% total)

- A1, worth 20%, due 25th August—start of week 7
- A2, worth 20%, due 29th Sept.—start of week 11

COSC412 Three assignments (40% total)

- A1 and A2 as above, but both worth 10%
- A3: Poster and presentation (20% total)
- PDFs of posters will be due 10th October—end of week 12;
- Presentations will be in week 13 (i.e., the last week of term)

• **Exam**: Worth 60%; minimum 40% to pass paper; date TBC

Textbook? Resources?

- We expect to provide online references
- The COSC412 and COSC312 website resources and lecture notes sections will link to relevant material:
 - https://cosc312.cspages.otago.ac.nz/
 - https://cosc412.cspages.otago.ac.nz/
- We'll present more than the examinable material In exam: only what we've been able to discuss COSC312/COSC412 Lecture 1, 2025

We are not setting a particular textbook for the course

6

More on posters and presentations (A3)

- COSC412: you will select a security issue of interest that you can research in groups
- Groups must write & design their poster collaboratively They will be submitted before the presentations Academic posters contain a lot of content—examples later

- Presentations from groups must involve all members of the group: during the introduction and/or poster tour

Potential outline of material

- Introduction, security, cryptography theory • L1: Introduction and administration
- L2: Fundamentals of classical cryptosystems and one-time pads • L3: Stream ciphers, key agreement & asymmetric cryptography Quantum computation and cryptography
 - L4: Quantum computation
- More cryptography in practice
 - L5: Kerberos and Microsoft Active Directory
 - L6: Block ciphers, HTTPS, TLS/SSL and certificates
 - L7: Decentralised authorisation and OAuth 2.0

Potential outline of material (cont.)

- Mid-semester break is between L7 and L8 More cryptography in practice
- - L8: Reliability, distributed consensus and bitcoin
 - L9: Blockchain and cryptocurrencies
 - **L10**: Homomorphic Encryption
 - L11: Programming language security
 - L12: Hardware support for software security & emerging tech.
- L13: Poster presentations (412 students) & exam advice

Learning objectives of lecture one

- Understand computer security fundamentals
- Be able to explain cryptography's role in security For the 'in practice' parts of the course, we usually employ cryptography as a black box tool
- Appreciate alternatives to cryptography Describe the limits of cryptography as a tool Explain threats cryptography cannot protect against

What is cryptography?

- A dictionary definition:
 - cryptography | krip'tägrafē | noun
 - "the art of writing or solving codes."
- You should aim to be able to define the term more specifically to computing than this! The theory part of this course will help...

What is computer security?

- Physical security: protect console / computer Computer can be stolen? Encrypt disks
- Software security: authenticity, correctness e.g., code signing; verifying software behaviour
- Information security has three main pillars: Confidentiality; Integrity; Availability;
- Network security: untrustworthy regions
- COSC312/COSC412 Lecture 1, 2025

Why is cryptography useful for security?

- used by intercommunicating trusted principals
- What about supporting liveness properties?
- Attackers don't need full control to break systems
 - e.g., DDoS (Distributed Denial of Service):
 - Attackers overwhelm target system without seeing any secrets

COSC312/COSC412 Lecture 1, 2025

Correctness property: An untrusted channel can be

• e.g., keeping secure communications flowing over a link?

Key principle: shared secret

- Trusted interactions need pre-shared data
- Look for where shared secrets fit in any given system
 - May not be immediately obvious
- Contrast the shared secret encoding in:
 - HTTPS, SSH, PGP

COSC312/COSC412 Lecture 1, 2025

 Diffie-Hellman key-exchange establishes a shared secret but doesn't authenticate—beware adversary in the middle (AitM)

Some security doesn't need cryptography

- Physical security

 - Air gap isolation; walk-in access to data centres Restricting peripheral access (how?)
- Network security
 - Separate physical network cabling
 - Separate virtual networks (e.g., VLANs)
- What about software security? Compile software from source... but is this enough?

When is cryptography use inappropriate?

- Storage of life-long sensitive data?
 - While attackers might not be able to read the data today, you are still giving them your data in some form!
 - For how long will a given cypher be secure?
 - What application domains have this concern?

Managing keys may be challenging

COSC312/COSC412 Lecture 1, 2025

Performance used to be an argument—less so, now

Cryptography ageing (... badly)

- Cryptographic strength diminishes over time • e.g., DES
- Cryptography design may have bugs MD5—hash collisions can be constructed: <u>http://s3.amazonaws.com/dmk/md5_someday.pdf</u>
- Implementations of protocols may contain bugs OAuth; Kerberos 4; NTLM; …

New hardware, new threats to crypto.

- Hardware performance increases allow for brute-force attacks that were not previously possible
 - Attacks parallelise easily: e.g., using multicore CPUs, GPUs

 - ... tensor processing units (TPUs); programmable hardware (FPGAs) • ... and many available via large botnets

COSC312/COSC412 Lecture 1, 2025

 Indexing techniques: attackers have more storage too Can compute large datasets for attacks (e.g., rainbow tables)

Pillars of information security

- Recall the three main pillars of information security: Confidentiality, Integrity, Availability—CIA (!) We will look at where cryptography fits within each

- Other classifications exist, such as the IAS Octave:
 - Adds: privacy, authenticity & trustworthiness, non-repudiation, accountability and auditability
 - CIA principles can help inform these extra ones

Crypto in info. sec.: confidentiality

- Confidentiality (AKA secrecy) is probably the most widely appreciated cryptography use
 - Hiding of information
 - Controlling a set of people that have access
- Cryptography supports confidentiality when key distribution is controlled

 - (Alternatively just don't give out the data!)

COSC312/COSC412 Lecture 1, 2025

Asymmetric cryptography: easier key distribution control

Crypto in info. sec.: integrity

- Checksums can check for data being modified

- **Digital signatures** go further than MACs Use asymmetric cryptography
 - Include necessary means for nonrepudiation

COSC312/COSC412 Lecture 1, 2025

Go further to create Message Authentication Codes (MACs) that include principal's identifying information Uses symmetric cryptography→shared key→no nonrepudiation

Crypto in info. sec.: availability

- Can cryptography help secure availability? • Not directly...
- Resources are used when rebuffing attacks Therefore attacks can affect availability cheaply
- Cryptography can help indirectly
 - Validate authenticity of network link usage
 - Effect distributed rate control of malicious use

Cryptography in code executables

- Signing of 'data' that is actually executable code • e.g., Java Archives (JARs), and

 - macOS and Windows executables
- Linux package repositories include signatures Often of packages rather than the EXEs contained (Debian)
- ... also sometimes from the bad guys (how?)

Building effective, secure systems

- Ross Anderson (University of Cambridge) pioneered the field of Security Engineering—whole system view
 - Cryptography? Yes, but also:
 - Social science; psychology; economics; etc.
- Need to apply threat modelling: Identify assets, adversaries, and capabilities

In any case: best plan for security failures!

Social engineering attacks

Users are often the weakest link in secure systems!

- they can access services through users?
 - **Phishing** attacks are highly profitable
 - We wouldn't fall for '**driftnet**' attacks

Why would hackers try to break cryptography when

• ... but targeted social engineering attacks are a different story (spear-phishing): careful research is undertaken by the attacker

Authentication and Authorisation

- Return to how users participate in security
- Authentication involves proving identity Generally this should not need to change much
- Authorisation checks follow authentication
 - Privileges of user on target system are checked
 - Much more likely to change frequently

... AAA—add Accounting too

- Systems such as RADIUS provide for AAA (Remote Authentication Dial In User Service) RADIUS is often behind corporate Wi-Fi APs

 In addition to managing user identity, and user privileges, RADIUS also manages usage tracking

How does cryptography link to accounting?

Revocation

- Justifies authorisation / authentication split:
 - May need to remove the privileges of a user,
 - but you can't 'remove' their identity
- Revocation and digitally-signed assertions:
 - Can systems revoke digitally signed statements?
 - e.g., HTTPS CRLs—more on these later

COSC312/COSC412 Lecture 1, 2025

How quickly does revocation mechanism take effect?

Delegation

- Delegation is a desirable security facility
 - **Temporarily** give another user privileges
 - Needs a clear revocation protocol
 - ... or an understanding that revocation is impractical
- Most use-cases only transfer some privileges

 - onto **access control** policy

COSC312/COSC412 Lecture 1, 2025

Aim not for delegator to be entirely impersonated by target of delegation! e.g., a helper app doesn't have all your privileges ... so we need rich user privilege representation, which leads

Access Control

- ... is an enforcement mechanism of some policy Policy describes what is allowed
 - Mechanism is how that policy is enforced

Typically code-based enforcement, but this risks:

- Missing access control checks
- Time of check to time of use (TOCTOU) errors
- Can code access control directly into software, but... Ideally make policy entirely code independent

Can use libraries such as XACML

Cryptography for access control

- Cryptography supports aspects of access control:
 - Authentication of users
 - Password hashes
 - Challenge-response interactions
 - Controlling access to data
 - Digital Rights Management
 - Encrypted filesystems
 - Digital signatures on audit logs

Ensures logs cannot be tampered with in an undetectable manner

Access Control Matrix

 Fundamental representation of users, objects and privileges within a secured system

	/dev/random	Directory 'logs'	File 'report.pdf'
User Jim	read	read, write, execute, own	
User Ned	read	read, execute	read,write,own

- Collect columns? Get Access Control Lists (ACLs) Collect rows? Get 'capabilities'
- ... but this representation is of static security

Discretionary Access Control—DAC

DAC is the most common form of access control

 Users are free to modify access privileges over objects that they own—think Unix / NTFS filesystem permissions

No system-wide security policy

Mandatory Access Control—MAC

- Common in military / intelligence services
- Data-linked security: system-wide policy
 - Often based on labels
 - Users have labels; processes inherit labels
 - Data items also have labels
- User/data label policy is enforced, e.g.: No write-down—you can't declassify information No read-up—you can't read more sensitive data

Role-based Access Control—RBAC

Insert roles as an abstraction between users & privileges

- Like user groups, but more expressive Roles have to be activated within a session Role activation usually under control of the user e.g., RBAC avoids Solaris needing all-powerful 'root' user
- We'll see an RBAC / crypto link much later

Summary

- Introduced cryptography and security
 - Cryptography is not always needed for security
 - Placed crypto in the context of access control
 - network protocols
- Security Engineering: a whole-system view
 - Consider all of the interacting participants
 - Plan for security failures—everyone makes mistakes!

COSC312/COSC412 Lecture 1, 2025

Skimmed over use of crypto in typical software systems and

